Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (6): 1826.doi: 10.7503/cjcu20200888
• Physical Chemistry • Previous Articles Next Articles
WANG Yuxiang1, YU Shen1, LIU Zhan1, LYU Jiamin1, LI Xiaoyun2, CHEN Lihua1(), SU Baolian1,3()
Received:
2020-12-23
Online:
2021-06-10
Published:
2021-06-08
Contact:
CHEN Lihua,SU Baolian
E-mail:chenlihua@whut.edu.cn;bao-lian.su@unamur.be
Supported by:
CLC Number:
TrendMD:
WANG Yuxiang, YU Shen, LIU Zhan, LYU Jiamin, LI Xiaoyun, CHEN Lihua, SU Baolian. One-step Synthesis of Amorphous Silica Aluminum Support Materials with Controllable Acidity and Porosity and Catalytic Performance of Their Pd-based Catalysts[J]. Chem. J. Chinese Universities, 2021, 42(6): 1826.
Initial Si/Al ratio | SBETa/(m2·g-1) | Total pore volumeb/(cm3·g-1) | Mesopore sizec/nm |
---|---|---|---|
Pure Al2O3 | 234.0 | 0.56 | 6.81, 10.61 |
0.05 | 349.6 | 0.52 | 4.91 |
0.1 | 313.7 | 0.46 | 5.89 |
0.15 | 257.6 | 0.32 | 5.31 |
0.25 | 241.3 | 0.39 | 2.66, 7.05 |
0.5 | 292.4 | 0.18 | 2.62 |
Pure SiO2 | 206.8 | 0.32 | — |
Initial Si/Al ratio | SBETa/(m2·g-1) | Total pore volumeb/(cm3·g-1) | Mesopore sizec/nm |
---|---|---|---|
Pure Al2O3 | 234.0 | 0.56 | 6.81, 10.61 |
0.05 | 349.6 | 0.52 | 4.91 |
0.1 | 313.7 | 0.46 | 5.89 |
0.15 | 257.6 | 0.32 | 5.31 |
0.25 | 241.3 | 0.39 | 2.66, 7.05 |
0.5 | 292.4 | 0.18 | 2.62 |
Pure SiO2 | 206.8 | 0.32 | — |
Initial Si/Al ratio | Weak acid quantity/ (mmol·g-1) | Medium acid quantity/(mmol·g-1) | Strong acid quantity/(mmol·g-1) | Total acid quantity/ (mmol·g-1) |
---|---|---|---|---|
Pure Al2O3 | 0.097 | 0.043 | 0.685 | 0.825 |
0.05 | 0.464 | 0.007 | 0.918 | 1.389 |
0.1 | 0.334 | 0.007 | 1.035 | 1.376 |
0.15 | 0.693 | 0.011 | 1.158 | 1.862 |
0.25 | 0.781 | 0.007 | 1.448 | 2.236 |
0.5 | 0.608 | 0.010 | 1.341 | 1.959 |
Pure SiO2 | 0.608 | — | 0.314 | 0.922 |
Initial Si/Al ratio | Weak acid quantity/ (mmol·g-1) | Medium acid quantity/(mmol·g-1) | Strong acid quantity/(mmol·g-1) | Total acid quantity/ (mmol·g-1) |
---|---|---|---|---|
Pure Al2O3 | 0.097 | 0.043 | 0.685 | 0.825 |
0.05 | 0.464 | 0.007 | 0.918 | 1.389 |
0.1 | 0.334 | 0.007 | 1.035 | 1.376 |
0.15 | 0.693 | 0.011 | 1.158 | 1.862 |
0.25 | 0.781 | 0.007 | 1.448 | 2.236 |
0.5 | 0.608 | 0.010 | 1.341 | 1.959 |
Pure SiO2 | 0.608 | — | 0.314 | 0.922 |
Catalyst | Active particle diameter/nm | Active metal surface area/(m2·g-1) | Metal dispersion(%) |
---|---|---|---|
Pd/0.05?ASA | 1.77 | 2.81 | 63.17 |
Pd/0.15?ASA | 6.00 | 0.83 | 18.69 |
Pd/0.25?ASA | 18.10 | 0.28 | 6.19 |
Catalyst | Active particle diameter/nm | Active metal surface area/(m2·g-1) | Metal dispersion(%) |
---|---|---|---|
Pd/0.05?ASA | 1.77 | 2.81 | 63.17 |
Pd/0.15?ASA | 6.00 | 0.83 | 18.69 |
Pd/0.25?ASA | 18.10 | 0.28 | 6.19 |
Sample | Si/Al ratio | Catalyst | Pd mass fraction(%) |
---|---|---|---|
0.05?ASA | 0.057 | Pd/0.05?ASA | 0.96 |
0.1?ASA | 0.092 | Pd/0.15?ASA | 1.27 |
0.15?ASA | 0.167 | Pd/0.25?ASA | 1.01 |
0.25?ASA | 0.281 | Pd/Al2O3 | 0.96 |
0.5?ASA | 0.526 | — | — |
Sample | Si/Al ratio | Catalyst | Pd mass fraction(%) |
---|---|---|---|
0.05?ASA | 0.057 | Pd/0.05?ASA | 0.96 |
0.1?ASA | 0.092 | Pd/0.15?ASA | 1.27 |
0.15?ASA | 0.167 | Pd/0.25?ASA | 1.01 |
0.25?ASA | 0.281 | Pd/Al2O3 | 0.96 |
0.5?ASA | 0.526 | — | — |
Initial Si/Al ratio of Pd/ASA | SaBET/(m2·g-1) | Total pore volumeb/(cm3·g-1) | Mesopore sizec/nm |
---|---|---|---|
0.05 | 299.6 | 0.46 | 6.41 |
0.15 | 247.5 | 0.44 | 3.24 and 8.41 |
0.25 | 102.5 | 0.26 | 4.53 and 8.28 |
Initial Si/Al ratio of Pd/ASA | SaBET/(m2·g-1) | Total pore volumeb/(cm3·g-1) | Mesopore sizec/nm |
---|---|---|---|
0.05 | 299.6 | 0.46 | 6.41 |
0.15 | 247.5 | 0.44 | 3.24 and 8.41 |
0.25 | 102.5 | 0.26 | 4.53 and 8.28 |
1 | Ma Q. H., Cui F., Liu M. F., Xu L. X., Zhang J. J., Cui T. Y., Chem. J. Chinese Universities, 2019, 40(10), 2041―2045(马清海, 崔放, 刘沐斐, 徐林煦, 张佳佳, 崔铁钰. 高等学校化学学报, 2019, 40(10), 2041―2045) |
2 | Zhang Q., Ding M. Y., Zhang Y. L., Li Y. P., Wang C. G., Wang T. J., Ma L. L., Chem. J. Chinese Universities, 2016, 37(11), 2060―2067(张浅, 定明月, 张玉兰, 李宇萍, 王晨光, 王铁军, 马隆龙. 高等学校化学学报, 2016, 37(11), 2060―2067) |
3 | Lee C. R., Yoon J. S., Suh Y. W., Choi J. W., Ha J. M., Suh D. J., Park Y. K., Catal. Commun., 2012, 17, 54―58 |
4 | Roldugina E. A., Naranov E. R., Maximov A. L., Karakhanov E. A., Appl. Catal. A Gen., 2018, 553, 24―35 |
5 | Musselwhite N., Na K., Sabyrov K., Alayoglu S., Somorjai G. A., J. Am. Chem. Soc., 2015, 137, 10231―10237 |
6 | Xiao S. S., Ouyang Y. T., Li X. Y., Wang Z., Wu P., Deng Z., Chen L. H., Su B. L., Chem. J. Chinese Universities, 2018, 39(6), 1235―1241(肖珊珊, 欧阳逸挺, 李小云, 王朝, 吴攀, 邓兆, 陈丽华, 苏宝连. 高等学校化学学报, 2018, 39(6), 1235―1241) |
7 | Niu P., Liu P., Xi H., Ren J., Lin M., Wang Q., Chen X., Jia L., Hou B., Li D., Appl. Catal. A Gen., 2018, 562, 310―320 |
8 | Karakhanov E. A., Kardashev S. V., Maksimov A. L., Baranova S. V., Kulikov A. B., Ostroumova V. A., Shirokopoyas S. I., Lysenko S. V., Pet. Chem., 2012, 52, 228―232 |
9 | Kulikov A. B., Onishchenko M. I., Sizova I. A., Maksimov A. L., Lysenko S. V., Karakhanov E. A., Pet. Chem., 2016, 56, 836―840 |
10 | Zhang C. L., Huang D. Y., Sun M. H., Ouyang Y. T., Wang C., Li X. Y., Chen L. H., Su B. L., Chem. J. Chinese Universities, 2017, 38(3), 471―478(张春磊, 黄丹娅, 孙明慧, 欧阳逸挺, 王超, 李小云, 陈丽华, 苏宝连. 高等学校化学学报, 2017, 38(3), 471―478) |
11 | Stanley J. N. G., Heinroth F., Weber C. C., Masters A. F., Maschmeyer T., Appl. Catal. A Gen., 2013, 454, 46―52 |
12 | Xu D., Xiao S. S., Wu P., Pan Y., Chen L. H., Su B. L., Xue M., Qiu S. L., Chem. J. Chinese Universities, 2018, 39(1), 19―24 (徐丹, 肖珊珊, 吴攀, 潘莹, 陈丽华, 苏宝连, 薛铭, 裘式纶. 高等学校化学学报, 2018, 39(1), 19―24) |
13 | He X. K., Li X. Y., Wang Z., Hu N., Deng Z., Chen L. H., Su B. L., Chem. J. Chinese Universities, 2020, 41(4), 639―645(何小可, 李小云, 王朝, 胡念, 邓兆, 陈丽华, 苏宝连. 高等学校化学学报, 2020, 41(4), 639―645) |
14 | Lysenko S. V., Baranova S. V., Maksimov A. L., Kardashev S. V., Kulikov A. B., Shirokopoyas S. I., Ostroumova V. A., Petrov N. Y., Karakhanov E. A., Pet. Chem., 2013, 53, 97―101 |
15 | Venezia A. M., Raimondi F., La Parola V., Deganello G., J. Catal., 2000, 194, 393―400 |
16 | Leliveld R. G., Ros T. G., Dillen A. J. V., Geus J. W., Koningsberger D. C., J. Catal., 1999, 185, 513―523 |
17 | Zhang G. S., Xin X. F., Guan Y., Zhou A. Q., Zhang X. M., Xu X. H., Chem. J. Chinese Universities, 2013, 34(4), 900―905(张功尚, 邢新峰, 管瑜, 周爱秋, 张晓梅, 许效红. 高等学校化学学报, 2013, 34(4), 900―905) |
18 | La Parola V., Deganello G., Scirè S., Venezia A. M., J. Solid State Chem., 2003, 174, 482―488 |
19 | Xu D. O., Wang R. W., Fu W. W., Wang Y., Zhang Z. T., Qiu S. L., Chem. J. Chinese Universities, 2011, 32(8), 1684―1687(许迪欧, 王润伟, 付伟伟, 王影, 张宗弢, 裘式纶. 高等学校化学学报, 2011, 32(8), 1684―1687) |
20 | Taillades⁃Jacquin M., Jones D. J., Rozière J., Rodríguez⁃Castellón E., Appl. Catal. A Gen., 2008, 340, 250―256 |
21 | Na K., Musselwhite N., Cai X., Alayoglu S., Somorjai G. A., J. Phys. Chem. A, 2014, 118, 8446―8452 |
22 | Samad J. E., Blanchard J., Sayag C., Louis C., Regalbuto J. R., J. Catal., 2016, 342, 203―212 |
23 | Zecevic J., Vanbutsele G., De Jong K. P., Martens J. A., Nature, 2015, 528, 245―248 |
24 | Daniell W., Schubert U., Glöckler R., Meyer A., Noweck K., Knözinger H., Appl. Catal. A Gen., 2000, 196, 247―260 |
25 | Liu S. M., Wang J. N., Yu S., Liu Z., Wang Z., Li X. Y., Chen L. H., Su B. L., Chem. J. Chinese Universities, 2020, 41(6), 1208―1217(刘思明, 汪建南, 余申, 刘湛, 王朝, 李小云, 陈丽华, 苏宝连. 高等学校化学学报, 2020, 41(6), 1208―1217) |
26 | Li S. G., Li X. K., Xu R. R., Chem. J. Chinese Universities, 1989, 10(10), 977―980(李守贵, 李锡凯, 徐如人. 高等学校化学学报, 1989, 10(10), 977―980) |
27 | Li Y., Peng C., Li L., Rao P., J. Am. Ceram. Soc., 2014, 97, 35―39 |
28 | Léonard A., Su B. L., Chem. Commun., 2004, 1674―1675 |
29 | Dapsens P. Y., Hakim S. H., Su B. L., Shanks B. H., Chem. Commun., 2010, 46, 8980―8982 |
30 | Liu M., Yang H., Colloids Surfaces A Physicochem. Eng. Asp., 2010, 371, 126―130 |
31 | Flego C., Carati A., Perego C., Microporous Mesoporous Mater., 2001, 44/45, 733―744 |
32 | Miller J. B., Ko E. I., Catal. Today, 1997, 35, 269―292 |
33 | Venezia A. M., La Parola V., Deganello G., Cauzzi D., Leonardi G., Predieri G., Appl. Catal. A Gen., 2002, 229, 261―271 |
34 | Kang E., Jung H., Park J. G., Kwon S., Shim J., Sai H., Wiesner U., Kim J. K., Lee J., ACS Nano, 2011, 5, 1018―1025 |
35 | Kockrick E., Krawiec P., Schnelle W., Geiger D., Schappacher F. M., Pöttgen R., Kaskel S., Adv. Mater., 2007, 19, 3021―3026 |
36 | Williams M. F., Fonfé B., Woltz C., Jentys A., Van Veen J. A. R., Lercher J. A., J. Catal., 2007, 251, 497―506 |
37 | Li S. G., Xu R. R., Chem. J. Chinese Universities, 1989, 10(7), 763―765(李守贵, 徐如人. 高等学校化学学报, 1989, 10(7), 763―765) |
38 | Keresszegi C., Grunwaldt J., Mallat T., Baiker A., J. Catal., 2004, 222, 268―280 |
39 | Grunwaldt J., Caravati M., Baiker A., J. Phys. Chem. B, 2006, 110, 25586―25589 |
[1] | TANG Quanjun, LIU Yingxin, MENG Rongwei, ZHANG Ruotian, LING Guowei, ZHANG Chen. Application of Single-atom Catalysis in Marine Energy [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220324. |
[2] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[3] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[4] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[5] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[6] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[7] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[8] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[9] | YANG Jingyi, SHI Siqi, PENG Huaitao, YANG Qihao, CHEN Liang. Integration of Atomically Dispersed Ga Sites with C3N4 Nanosheets for Efficient Photo-driven CO2 Cycloaddition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220349. |
[10] | WANG Ruyue, WEI Hehe, HUANG Kai, WU Hui. Freezing Synthesis for Single Atom Materials [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220428. |
[11] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[12] | HUANG Qiuhong, LI Wenjun, LI Xin. Organocatalytic Enantioselective Mannich-type Addition of 5H-Oxazol-4-ones to Isatin Derived Ketimines [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220131. |
[13] | TAN Yan, YU Shen, LYU Jiamin, LIU Zhan, SUN Minghui, CHEN Lihua, SU Baolian. Efficient Preparation of Mesoporous γ-Al2O3 Microspheres and Performance of Pd-loaded Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220133. |
[14] | HAN Fuchao, LI Fujin, CHEN Liang, HE Leiyi, JIANG Yunan, XU Shoudong, ZHANG Ding, QI Lu. Enhance of CoSe2/C Composites Modified Separator on Electrochemical Performance of Li-S Batteries at High Sulfur Loading [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220163. |
[15] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||