Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (5): 1514.doi: 10.7503/cjcu20200489
• Review • Previous Articles Next Articles
WANG Yimeng, LIU Kai(), WANG Baoguo
Received:
2020-07-23
Online:
2021-05-10
Published:
2020-11-27
Contact:
LIU Kai
E-mail:liukai2019@tsinghua.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Yimeng, LIU Kai, WANG Baoguo. Coating Strategies of Ni-rich Layered Cathode in LIBs[J]. Chem. J. Chinese Universities, 2021, 42(5): 1514.
Electrode material | Voltage range/V | Rate | Cycle | Specific capacity/(mA·h·g-1) | Capacity retention(%) | Ref. |
---|---|---|---|---|---|---|
Li?Zr?O@NCM811 | 3.0—4.3 | 0.5C | 50 | 175 | 94.3 | [ |
MgO@NCM622 | 3.0—4.3 | 1C | 100 | 130 | 82 | [ |
Al2O3@NCM523 | 3.0—4.5 | 1C | 100 | 140 | 85 | [ |
Y2O3@NCM811 | 3.0—4.3 | 1C | 100 | 136 | 91.4 | [ |
Al?doped ZnO@NCM523 | 3.5—4.5 | 1C | 200 | 134 | 90.2 | [ |
YF3@NCM111 | 2.8—4.3 | 5C | 100 | 125 | 93 | [ |
AlF3@NCM811 | 3.0—4.3 | 0.5C | 60 | — | 93 | [ |
CeF3@NCM111 | 2.8—4.5 | 0.5C | 100 | 140 | 88 | [ |
Na2SO4@NCM9 | 2.8—4.3 | 5C | 100 | — | 85.2 | [ |
LixBOyFz@NCM622 | 42.8—4.3 | 1C | 50 | 174 | 97.4 | [ |
Electrode material | Voltage range/V | Rate | Cycle | Specific capacity/(mA·h·g-1) | Capacity retention(%) | Ref. |
---|---|---|---|---|---|---|
Li?Zr?O@NCM811 | 3.0—4.3 | 0.5C | 50 | 175 | 94.3 | [ |
MgO@NCM622 | 3.0—4.3 | 1C | 100 | 130 | 82 | [ |
Al2O3@NCM523 | 3.0—4.5 | 1C | 100 | 140 | 85 | [ |
Y2O3@NCM811 | 3.0—4.3 | 1C | 100 | 136 | 91.4 | [ |
Al?doped ZnO@NCM523 | 3.5—4.5 | 1C | 200 | 134 | 90.2 | [ |
YF3@NCM111 | 2.8—4.3 | 5C | 100 | 125 | 93 | [ |
AlF3@NCM811 | 3.0—4.3 | 0.5C | 60 | — | 93 | [ |
CeF3@NCM111 | 2.8—4.5 | 0.5C | 100 | 140 | 88 | [ |
Na2SO4@NCM9 | 2.8—4.3 | 5C | 100 | — | 85.2 | [ |
LixBOyFz@NCM622 | 42.8—4.3 | 1C | 50 | 174 | 97.4 | [ |
Electrode material | Voltage range/V | Rate | Rate performance | Ref. |
---|---|---|---|---|
Li2Si2O5@NCM622 | 2.75—4.5 | 0.1C, 1C, 2C, 3C, 5C, 10C | 213, 185, 170, 148, 122 | [ |
Li2SO4@Li1.2[Ni0.54Co0.13Mn0.13]O2 | 2.0—4.8 | 0.2C, 0.5C, 1C, 3C | 245, 234, 223, 176 | [ |
LiF@NCM811 | 2.8—4.3 | 0.1C, 0.5C, 1C, 2C, 5C, 10C | 204, 190, 182, 171, 148, 135 | [ |
MoO3@NCM811 | 2.8—4.3 | 0.1C, 0.5C, 1C, 2C, 5C, 10C | 204, 196, 188, 182, 170, 160, 131 | [ |
Electrode material | Voltage range/V | Rate | Rate performance | Ref. |
---|---|---|---|---|
Li2Si2O5@NCM622 | 2.75—4.5 | 0.1C, 1C, 2C, 3C, 5C, 10C | 213, 185, 170, 148, 122 | [ |
Li2SO4@Li1.2[Ni0.54Co0.13Mn0.13]O2 | 2.0—4.8 | 0.2C, 0.5C, 1C, 3C | 245, 234, 223, 176 | [ |
LiF@NCM811 | 2.8—4.3 | 0.1C, 0.5C, 1C, 2C, 5C, 10C | 204, 190, 182, 171, 148, 135 | [ |
MoO3@NCM811 | 2.8—4.3 | 0.1C, 0.5C, 1C, 2C, 5C, 10C | 204, 196, 188, 182, 170, 160, 131 | [ |
Electrode material | Li+ diffusion conductivity, D+Li/(cm2·s-1) | Voltage range/V | Rate/C | Rate performance | Ref. |
---|---|---|---|---|---|
Li2SiO3@NCM622 | 1.49×10-10 | 2.8—4.4 | 0.2, 0.5, 1, 2, 5 | 196, 195, 191, 168, 158 | [ |
LATO@NCM811 | 5.40×10-11 | 3.0—4.6 | 0.5, 1, 2, 3, 6 | 172, 161, 140, 130, 100 | [ |
LaPO4@NCM811 | 1.42×10-11 | 3.0—4.3 | 0.1, 1, 2, 5, 10 | 197, 179, 166, 144, 124 | [ |
PEDOT?PEG@NCM622 | 4.20×10-3 | 2.8—4.5 | 0.1, 0.5, 1, 2, 5 | 185, 183, 179, 175, 169 | [ |
PANI?PEG@NCM811 | 2.85×10-2 | 2.8—4.3 | 0.2, 0.5, 1, 2, 5, 10 | 200, 195, 186, 177, 167, 156 | [ |
PANI?PVP@NCM811 | — | 2.8—4.3 | 20, 40, 100, 200, 400, 1000 | 225, 218, 208, 190, 180, 150 | [ |
PPy?LPO@NVM811 | 2.40×10-10 | 2.8—4.5 | 0.1, 0.5, 1, 2, 5, 10 | 205, 204, 198, 190, 177, 159 | [ |
Electrode material | Li+ diffusion conductivity, D+Li/(cm2·s-1) | Voltage range/V | Rate/C | Rate performance | Ref. |
---|---|---|---|---|---|
Li2SiO3@NCM622 | 1.49×10-10 | 2.8—4.4 | 0.2, 0.5, 1, 2, 5 | 196, 195, 191, 168, 158 | [ |
LATO@NCM811 | 5.40×10-11 | 3.0—4.6 | 0.5, 1, 2, 3, 6 | 172, 161, 140, 130, 100 | [ |
LaPO4@NCM811 | 1.42×10-11 | 3.0—4.3 | 0.1, 1, 2, 5, 10 | 197, 179, 166, 144, 124 | [ |
PEDOT?PEG@NCM622 | 4.20×10-3 | 2.8—4.5 | 0.1, 0.5, 1, 2, 5 | 185, 183, 179, 175, 169 | [ |
PANI?PEG@NCM811 | 2.85×10-2 | 2.8—4.3 | 0.2, 0.5, 1, 2, 5, 10 | 200, 195, 186, 177, 167, 156 | [ |
PANI?PVP@NCM811 | — | 2.8—4.3 | 20, 40, 100, 200, 400, 1000 | 225, 218, 208, 190, 180, 150 | [ |
PPy?LPO@NVM811 | 2.40×10-10 | 2.8—4.5 | 0.1, 0.5, 1, 2, 5, 10 | 205, 204, 198, 190, 177, 159 | [ |
1 | John B. G., Youngsik K., Chem. Mater, 2010, 132(35), 1168—1175 |
2 | Xu K., Chem. Rev., 2014, 114(23), 11503—11618 |
3 | Ohzuku T., Ueda A., J. Electrochem. Soc., 1993, 110, 4—9 |
4 | Rougier A., Gravereau P., Delmas C., J. Electrochem. Soc., 1996, 402, 77—83 |
5 | Zhan C., Chen W., Energy Environ. Sci., 2018. 54, 313—321 |
6 | Harper G., Sommerville R., Kendrick E., Nature, 2019, 575, 75—86 |
7 | David L., Mohanty D., Geng L., Ruther R. E., Sefat A. S., Chem. Electro. Chem., 2019, 6, 5571—5580 |
8 | Liu Z., Yu A., Lee J., J. Power Sources, 1999, 81, 416—419 |
9 | Ohzuku T., Makimura Y., Chem. Lett., 2001, 1(7), 642—643 |
10 | Kim M. H., Shin H. S., Shin D., Sun Y. K., J. Power Sources, 2006, 159, 1328—1333 |
11 | Maleki Kheimeh Sari H., Li X., Adv. Energy Mater., 2019, 9, 1901597 |
12 | Choi J., Manthiram A., J. Electrochem. Soc., 2016, 327, 145—150 |
13 | Wang X., Ding Y. L., Deng Y. P., Chen Z., Adv. Energy Mater., 2020, 10, 1903864 |
14 | Noh H. J., Youn S., Yoon C. S., Sun Y. K., J. Power Sources, 2013, 233, 121—130 |
15 | Ma L., Nie M., Xia J., Dahn J. R., J. Power Sources, 2016, 327, 145—150 |
16 | Eum D., Kim B., Kim S. J., Park H., Wu J., Cho S. P., Yoon G., Lee M. H., Jung S. K., Yang W., Seong W. M., Ku K., Tamwattana O., Park S. K., Hwang I., Kang K., Nat. Mater., 2020, 19, 419—427 |
17 | Li Y., Hou X. H., Zhou Y., Han W. Q., Liang C., Wu X., Wang S. F., Energy Technol., 2018, 6, 391—396 |
18 | Bak S. M., Hu E., Zhou Y., Yu X., Senanayake S. D., Cho S. J., Kim K. B., Chung K. Y., Yang X. Q., Nam K. W., ACS Appl. Mater. Interface, 2014, 6, 22594—22601 |
19 | Lin Q., Guan W., Meng J., Huang W., Wei X., Zeng Y., Li J., Zhang Z., Nano Energy, 2018, 54, 313—321 |
20 | Kondrakov A. O., Schmidt A., Xu J., Geßwein H., Mönig R., Hartmann P., Sommer H., Brezesinski T., Janek J., J. Phys. Chem., 2017, 121, 3286—3294 |
21 | Chen S., He T., Su Y., Lu Y., Bao L., Chen L., Zhang Q., Wang J., Chen R., Wu F., ACS Appl. Mater. Interface, 2017, 9, 29732—29743 |
22 | Yan P., Zheng J., Zheng J., Wang Z., Teng G., Kuppan S., Xiao J., Chen G., Pan F., Zhang J. G., Wang C. M., Adv. Energy Mater., 2016, 6, 1502455 |
23 | Kim H., Lee S., Cho H., Kim J., Lee J., Park S., Joo S. H., Kim S. H., Cho Y. G., Song H. K., Kwak S. K., Cho J., Adv. Mater., 2016, 28, 4705—4712 |
24 | Li W., Dolocan A., Oh P., Nat. Comm., 2017, 8(1), 33546—33552 |
25 | Aurbach D., Markovsky B., Salitra G., Markevich E., Talyossef Y., Koltypin M., Nazar L., Ellis B., Kovacheva D., J. Power Sources, 2007, 165, 491—499 |
26 | Nicholas P., Zhongyi L., Peng L., J. Phys. Chem. C, 2013, 117, 15947—15957 |
27 | Zhu Z. Q., Tang Y. X., Zhang Y., Wang R., Zhang W., Angew. Chem. Int. Ed., 2018, 57, 3656—3660 |
28 | Biasi L., Schwarz B., Brezesinski T., Hartmann P., Janek J., Adv. Mater., 2019, 31, 1900985 |
29 | Yoon C., Jun D., Myung S., ACS Energy Lett., 2017, 2(5), 1150—1155 |
30 | Renfrew S. E., McCloskey B. D., J. Am. Chem. Soc., 2017, 139, 17853—17860 |
31 | Salitra G., Mccloskey D., RSC Adv., 2016, 6(23), 19233—19237 |
32 | Woo S., Yoon C., Amine K., J. Electrochem. Soc., 2007, (3), 447—454 |
33 | Myung S. T., Maglia F., Park K. J., Yoon C. S., Lamp P., Kim S. J., Sun Y. K., ACS Energy Lett., 2016, 2, 196—223 |
34 | Han B., Key B., Lapidus S., ACS Appl. Mater. Interface, 2017, 9(47), 41291—41302 |
35 | Hu G., Zhang M., Wu L., Peng Z., Du K., Cao Y., ACS Appl. Mater. Interface, 2016, 8, 33546—33552 |
36 | Kraytsberg A., Drezner H., Auinat M., Shapira A., Solomatin N., Axmann P., Wohlfahrt M., Ein⁃Eli Y., Chem. Nano. Mat., 2015, 1, 577—585 |
37 | Liu B., Zhang Z., Wan J., Ionics, 2017, 23(6), 1365—1374 |
38 | Woo S., Yoon C., Amine K., J. Electrochem. Soc., 2009, (6), 224—232 |
39 | Choi J., Kim J., Lee K. T., Lim J., Lee J., Yun Y. S., Adv. Mater. Interfaces, 2016, 3, 1600784 |
40 | Min K., Jung C., Ko D. S., Kim K., Jang J., Park K., Cho E., ACS Appl. Mater. Interface, 2018, 10, 20599—20610 |
41 | Zhuang G. V., Chen G., Shim J., Song X., Ross P. N., Richardson T. J., J. Power Sources, 2004, 134, 293—297 |
42 | Xiong X., Wang Z., Yue P., Guo H., Wu F., Wang J., Li X., J. Power Sources, 2013, 222, 318—325 |
43 | Xiong X., Wang Z., Guo C., Wu F., Guo H., Li X., J. Power. Sources, 2014, 245, 183—193 |
44 | Liu S., Wu H., Huang L., Xiang M., Liu H., Zhang Y., J. Alloys. Compd., 2016, 674, 447—454 |
45 | Ban L., Yin Y., Zhuang W., Electrochemical Acta, 2015, 180, 218—226 |
46 | Lee W., Kim M. S., Jeong J. H., Kim D. H., J. Power. Sources, 2016, 245, 137—145 |
47 | Xie J., Sendek A., Cubuk D., ACS Nano, 2017, 11(7), 7019 |
48 | Li L., Xu M., Yao Q., Chen Z., Song L., Zhang Z., Gao C., Wang P., Yu Z., Lai Y., ACS Appl. Mater. Interfaces, 2016, 8, 30879—30889 |
49 | Hou Q., Cao G., Wang P., Zhao D., Cui X., Li S., Li C., J. Alloys. Compd., 2018, 747, 796—802 |
50 | Cho W., Kim S. , Lee K W., Electrochimica. Acta, 2016, 402, 77—83 |
51 | Chen Z., Kim G. T., Guang Y., Bresser D., Diemant T., Huang Y., Copley M., Behm R. J., Passerini S., Shen Z., J. Power Sources, 2018, 402, 263—271 |
52 | Park K. S., Schougaard S. B., Goodenough J. B., Adv. Mater., 2007, 19, 848—851 |
53 | Song L. B., Tian F. L., Xue Z. L., J. Electron. Mater., 2018, 9(6),455—462 |
54 | Cao Y., Qi X., Hu K., Wang Y., Gan Z., Li Y., Hu G., Peng Z., Du K., ACS Appl. Mater. Interface, 2018, 10, 18270—18280 |
55 | Xiong X., Ding D., Wang Z., J. Solid State Electron., 2014, 18(9), 2619—2624 |
56 | Sun Z., Li Z., Gao L., Adv. Energy Mater., 2019, 9(6), 1802946 |
57 | Ju S. H., Kang I. S., Lee Y. S., Shin W. K., Kim S., Shin K., Kim D. W., ACS Appl. Mater. Interface, 2014, 6, 2546—2552 |
58 | Doo S. W., Lee S., Kim H., Choi J. H., Lee K. T., ACS Appl. Energy Mater., 2019, 2, 6246—6253 |
59 | Chen S., He T., Chen L., Lu Y., Wu F., ACS Appl. Mater. Interface, 2017, 9, 29732—29743 |
60 | Zhang J. P., Xue L., Li Y., Lei T., Deng S., Chen Y., Zhu J., Guo J., Chem. Electro. Chem., 2019, 6, 3125—3131 |
61 | Sun Y. K., Chen Z., Lee D. J., Nat. Mater., 2012, 11, 942—947 |
62 | Xu G. L., Liu Q., Lau K. K. S., Liu Y., Liu X., Gao H., Zhou X., Zhuang M., Ren Y., Li J., Shao M., Ouyang M., Pan F., Chen Z., Amine K., Chen G., Nat. Energy, 2019, 4, 484—494 |
63 | Yan P., Zheng J., Liu J., Wang B., Cheng X., Zhang Y., Sun X., Wang C., Zhang J. G., Nat. Energy, 2018, 3, 600—605 |
64 | Zhang M., Zhao H., Tan M., Liu J., Hu Y., Liu S., Shu X., Li H., Ran Q., Cai J., Liu X., J. Alloys. Compd., 2019, 774, 82—92 |
65 | Wu H., Pang X., Bi J., Wang L., Li Z., Guo L., Liu H., Meng Q., Jiang H., Liu C., Wang L., J. Alloys. Compd., 2020, 829, 154571 |
66 | Gan Q., Qin N., Zhu Y., ACS Appl. Mater. Interface, 2019, 11, 12594—12604 |
67 | Lee S. W., Kim M. S., Jeong J. H., Kim D. H., Chung K. Y., Roh K. C., Kim K. B., J. Power. Sources, 2017, 360, 206—214 |
68 | Kumar A., Nazzario R., Torres⁃Castro L., Pena⁃Duarte A., Tomar M. S., Inter. J. Hydrogen Energy, 2015, 40, 4931—4935 |
69 | Dai S., Yuan M., Wang L., Luo L., Chen Q., Xie T., Li Y., Yang Y., Ceramics Inter., 2019, 45, 674—680 |
70 | Dorai A. K., Subramanian S., Hellar N., Leiro J., Mater. Chem. Phys., 2014, 143, 765—772 |
71 | Song G., Kim B., Park J., J. Electro., 2012, 29(2), 163—169 |
72 | Huang J., Fang X., Wu Y., J. Electro. Chem., 2018, 45, 359—367 |
73 | Zhu J., Li Y., Xue L., Chen Y., Lei T., Deng S., Cao G., J. Alloys. Compd., 2019, 773, 112—120 |
[1] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[2] | BAO Junquan, ZHENG Shibing, YUAN Xuming, SHI Jinqiang, SUN Tianjiang, LIANG Jing. An Organic Salt PTO(KPD)2 with Enhanced Performance as a Cathode Material in Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(9): 2911. |
[3] | WU Zhuoyan, LI Zhi, ZHAO Xudong, WANG Qian, CHEN Shunpeng, CHANG Xinghua, LIU Zhiliang. A Highly Efficient One-step Preparation Method of Nano-silicon and Carbon Composite for High-performance Lithium Ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2500. |
[4] | YI Conghua, SU Huajian, QIAN Yong, LI Qiong, YANG Dongjie. Preparation of Lignin Nanocarbon and Its Performance as a Negative Electrode for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(6): 1807. |
[5] | MAO Eryang, WANG Li, SUN Yongming. Advances in Alloy-based High-capacity Li-containing Anodes for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(5): 1552. |
[6] | ZHOU Zhan, MA Lufang, TAN Chaoliang. Preparation of Layered (NH4)2V6O16·H2O Nanosheets as an Anode for Li-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(2): 662. |
[7] | SUN Quanhu, LU Tiantian, HE Jianjiang, HUANG Changshui. Advances in the Study of Heteratomic Graphdiyne Electrode Materials [J]. Chem. J. Chinese Universities, 2021, 42(2): 366. |
[8] | GONG Shanshan, WU Tong, WANG Guange, HUANG Qing, SU Yuefeng, WU Feng. Screening of Deep Eutectic Solvent Based on Efficient Recovery of Spent Lithium⁃ion Battery Cathode Materials [J]. Chem. J. Chinese Universities, 2021, 42(10): 3151. |
[9] | XIANG Houzheng, XIE Hongxiang, LI Wenchao, LIU Xiaolei, MAO Aiqin, YU Haiyun. Synthesis and Electrochemical Performance of Spinel-type High-entropy Oxides [J]. Chem. J. Chinese Universities, 2020, 41(8): 1801. |
[10] | LU Di,ZHENG Chunman,CHEN Yufang,LI Yujie,ZHANG Hongmei. Synthesis of Li-rich Layers/Spinel/Carbon Composite Cathode Materials with Phenol Formaldehyde Resin and Its Electrochemical Performance† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1684. |
[11] | CHEN Liangdan,ZOU Wei,WU Liang,XIA Fanjie,HU Zhiyi,LI Yu,SU Baolian. Nano-Al2O3 Coated Li-rich Cathode Material Li1. 2Ni0.13Co0.13Mn0.54O2 for Highly Improved Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2020, 41(6): 1329. |
[12] | LI Xiangnan, WANG Qiuxian, FAN Yong, YU Mingming, ZHANG Huishuang, YANG Shuting. Deposition Method Synthesis of Nano-phosphorus/Biomass Carbon Composites and Their High- and Low-temperature Electrochemical Performances as Anode Material in Lithium-ion Batteries † [J]. Chem. J. Chinese Universities, 2019, 40(9): 1949. |
[13] | YAO Fengnan,LI Yu,FENG Wei. Synthesis and Electrochemical Performance of Carbon-coated FeF2 Nanocomposite† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1418. |
[14] | YANG Jinge, LI Yujie, LU Di, CHEN Yufang, SUN Weiwei, ZHENG Chunman. Morphology Control and Lithium Storage Performance of Micro/nano Li-rich Cathode Material† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1495. |
[15] | ZHAO Xinyue,WANG Jinglun,YAN Xiaodan,ZHANG Lingzhi. Effect of Nitrile Group Functionalized Organosilicon as Electrolyte Additive on Low-temperature Performance of LiFePO4 Battery† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||