Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (3): 671.doi: 10.7503/cjcu20200533
• Review • Previous Articles Next Articles
SHE Peihong1, XU Wenzhou2(), GUAN Buyuan1,3(
)
Received:
2020-08-06
Online:
2021-03-10
Published:
2021-03-08
Contact:
XU Wenzhou
E-mail:xuwenzhou@jlu.edu.cn;guanbuyuan@jlu.edu.cn
CLC Number:
TrendMD:
SHE Peihong, XU Wenzhou, GUAN Buyuan. Synthesis and Application of Silica/carbon-based Large-pore Mesoporous Nanomaterials[J]. Chem. J. Chinese Universities, 2021, 42(3): 671.
Method | Feature | Typical example |
---|---|---|
Soft?templating method | Self?assembly of the amphiphilic templates and framework precursors to form mesoporous nanomaterials | Dendritic mesoporous silica nanoparticles[ Core?shell mesoporous silica nanoparticles[ N?doped carbon nanoparticles[ Macro?/Mesoporous polydopamine nanoparticles[ |
Hard?templating method | Self?assembly of organic ligands decorated inorganic nanocrystals to form mesostructured nanomaterials | Ordered mesoporous graphene frameworks[ Inorganic nanoparticles accumulated superlattice pipeline tubes[ |
Method | Feature | Typical example |
---|---|---|
Soft?templating method | Self?assembly of the amphiphilic templates and framework precursors to form mesoporous nanomaterials | Dendritic mesoporous silica nanoparticles[ Core?shell mesoporous silica nanoparticles[ N?doped carbon nanoparticles[ Macro?/Mesoporous polydopamine nanoparticles[ |
Hard?templating method | Self?assembly of organic ligands decorated inorganic nanocrystals to form mesostructured nanomaterials | Ordered mesoporous graphene frameworks[ Inorganic nanoparticles accumulated superlattice pipeline tubes[ |
1 | Liu J., Wickramaratne N. P., Qiao S. Z. , Jaroniec M., Nat. Mater., 2015, 14,763—774 |
2 | Wan Y. , Zhao D., Chem. Rev., 2007, 107,2821—2860 |
3 | Giordano F., Abate A., Baena J. P. C., Saliba M., Matsui T., Im S. H., Zakeeruddin S. M., Nazeeruddin M. K., Hagfeldt A. , Graetzel M., Nat. Commun., 2016, 7,10379 |
4 | Li W., Liu J. , Zhao D., Nat. Rev. Mater., 2016, 1,16023 |
5 | Cui Z., Zu C., Zhou W., Manthiram A. , Goodenough J. B., Adv. Mater., 2016, 28,6926—6931 |
6 | Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G., Science, 1998, 279,548—552 |
7 | Che S., Liu Z., Ohsuna T., Sakamoto K., Terasaki O. , Tatsumi T., Nature, 2004, 429,281—284 |
8 | Gao X., Li G., Xu Y., Hong Z., Liang C. , Lin Z., Angew. Chem., Int. Ed., 2015, 54,14331—14335 |
9 | Naushad M., Ahamad T., Al-Maswari B. M., Alqadami A. A. , Alshehri S. M., Chem. Eng. J., 2017, 330,1351—1360 |
10 | Le Z., Liu F., Nie P., Li X., Liu X., Bian Z., Chen G., Wu H. B. , Lu Y., ACS Nano, 2017, 11,2952—2960 |
11 | Benzigar M. R., Talapaneni S. N., Joseph S., Ramadass K., Singh G., Scaranto J., Ravon U., Al-Bahily K., Vinu A., Chem. Soc. Rev., 2018, 47,2680—2721 |
12 | Cook J. B., Kim H. S., Yan Y., Ko J. S., Robbennolt S., Dunn B. , Tolbert S. H., Adv. Energy Mater., 2016, 6, 1501937 |
13 | Kuang M., Wang Q., Han P. , Zheng G., Adv. Energy Mater., 2017, 7, 1700193 |
14 | Lakhi K. S., Park D. H., Al⁃Bahily K., Cha W., Viswanathan B., Choy J. H., Vinu A., Chem. Soc. Rev., 2017, 46,72—101 |
15 | Liu J., Zheng M., Shi X., Zeng H. , Xia H., Adv. Funct. Mater., 2016, 26,919—930 |
16 | Singh R., Belgamwar R., Dhiman M. , Polshettiwar V., J. Mater. Chem. B, 2018, 6,1600—1604 |
17 | Abbaraju P. L., Meka A. K., Song H., Yang Y., Jambhrunkar M., Zhang J., Xu C., Yu M. , Yu C., J. Am. Chem. Soc., 2017, 139,6321—6328 |
18 | Fan J., Yu C. Z., Lei J., Zhang Q., Li T. C., Tu B., Zhou W. Z. , Zhao D. Y., J. Am. Chem. Soc., 2005, 127,10794—10795 |
19 | Teh L. P., Triwahyono S., Jalil A. A., Firmansyah M. L., Mamat C. R. , Majid Z. A., Appl. Catal. A, 2016, 523,200—208 |
20 | Wang B., Zou J., Shen X., Yang Y., Hu G., Li W., Peng Z., Banham D., Dong A. , Zhao D., Nano Energy, 2019, 63, 103851 |
21 | de Vos D. E., Dams M., Sels B. F. , Jacobs P. A., Chem. Rev., 2002, 102,3615—3640 |
22 | Huang H. S., Chang K. H., Suzuki N., Yamauchi Y., Hu C. C. , Wu K. C., Small, 2013, 9,2520—2526 |
23 | Su L., Han D., Zhu G., Xu H., Luo W., Wang L., Jiang W., Dong A. , Yang J., Nano Lett., 2019, 19,5423—5430 |
24 | Li T., Wang B., Ning J., Li W., Guo G., Han D., Xue B., Zou J., Wu G., Yang Y., Dong A. , Zhao D., Matter, 2019, 1,976—987 |
25 | Su Y. S., Manthiram A., Nat. Commun., 2012, 3,1166 |
26 | Xing W., Qiao S. Z., Ding R. G., Li F., Lu G. Q., Yan Z. F. , Cheng H. M., Carbon, 2006, 44,216—224 |
27 | Gai S., Yang P., Ma P., Wang L., Li C., Zhang M., Jun L., Dalton Trans., 2012, 41,4511—4516 |
28 | Kwon D., Cha B. G., Cho Y., Min J., Park E. B., Kang S. J., Kim J., Nano Lett., 2017, 17,2747—2756 |
29 | Li Z., Barnes J. C., Bosoy A., Stoddart J. F. , Zink J. I., Chem. Soc. Rev., 2012, 41,2590—2605 |
30 | Tang F., Li L. , Chen D., Adv. Mater., 2012, 24,1504—1534 |
31 | Shen D., Yang J., Li X., Zhou L., Zhang R., Li W., Chen L., Wang R., Zhang F. , Zhao D., Nano Lett., 2014, 14,923—932 |
32 | Huang M., Liu L., Wang S., Zhu H., Wu D., Yu Z., Zhou S., Langmuir, 2017, 33,519—526 |
33 | Yue Q., Li J., Luo W., Zhang Y., Elzatahry A. A., Wang X., Wang C., Li W., Cheng X., Alghamdi A., Abdullah A. M., Deng Y., Zhao D., J. Am. Chem. Soc., 2015, 137,13282—13289 |
34 | Qu Q., Min Y., Zhang L., Xu Q., Yin Y., Anal. Chem., 2015, 87,9631—9638 |
35 | Dai Y., Yang D., Yu D., Xie S., Wang B., Bu J., Shen B., Feng W., Li F., Nanoscale, 2020, 12,5075—5083 |
36 | Tang J., Liu J., Li C., Li Y., Tade M. O., Dai S. , Yamauchi Y., Angew. Chem. Int. Ed., 2015, 54,588—593 |
37 | Guan B. Y., Zhang S. L. , Lou X. W., Angew. Chem. Int. Ed., 2018, 57,6176—6180 |
38 | Li C., Iqbal M., Jiang B., Wang Z., Kim J., Nanjundan A. K., Whitten A. E., Wood K. , Yamauchi Y., Chem. Sci., 2019, 10,4054—4061 |
39 | Zhang Y., Yue Q., Yu L., Yang X., Hou X. F., Zhao D., Cheng X. , Deng Y., Adv. Mater., 2018, 30,e1800345 |
40 | Tan H., Tang J., Henzie J., Li Y., Xu X., Chen T., Wang Z., Wang J., Ide Y., Bando Y., Yamauchi Y., ACS Nano, 2018, 12,5674—5683 |
41 | Jiao Y., Han D., Liu L., Ji L., Guo G., Hu J., Yang D., Dong A., Angew. Chem. Int. Ed., 2015, 54,5727—5731 |
42 | Fihri A., Cha D., Bouhrara M., Almana N. , Polshettiwar V., ChemSusChem, 2012, 5,85—89 |
43 | Cao D., Jiao Y., Cai Q., Han D., Zhang Q., Ma Y., Dong A. , Zhu H., J. Mater. Chem. A, 2019, 7,3289—3297 |
44 | Ding B., Shao S., Yu C., Teng B., Wang M., Cheng Z., Wong K. L., Ma P. , Lin J., Adv. Mater., 2018, 30,e1802479 |
45 | Cha B. G., Jeong J. H. , Kim J., ACS Cent. Sci., 2018, 4,484—492 |
[1] | GUO Cheng, ZHANG Wei, TANG Yun. Ordered Mesoporous Materials: History, Progress and Perspective [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220167. |
[2] | ZHANG Liling, LIU Liu, ZHENG Mingqiu, FANG Wenkai, LIU Da, TANG Hongwu. Dual Signal Detection of HPV16 DNA by CRISPR/Cas12a Biosensing System Based on Upconversion Luminescent Resonance Energy Transfer [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220412. |
[3] | DING Zhongzhen, LI Tian, LI Changming, ZHAO Yufei, SONG Yu⁃Fei. Research Progress of Catalytic Synthesis of Carbon Nanomaterials by Layered Double Hydroxide-based Catalysts [J]. Chem. J. Chinese Universities, 2021, 42(6): 1622. |
[4] | WANG Changyao, WANG Shuai, DUAN Linlin, ZHU Xiaohang, ZHANG Xingmiao, LI Wei. In situ Confinement Growth Strategy for Ordered Mesoporous Carbon Support Ultrasmall MoO3 Nanoparticles [J]. Chem. J. Chinese Universities, 2021, 42(5): 1589. |
[5] | YANG Ruiqi, YU Xin, LIU Hong. Scientific Study of Photocatalytic Material Based on Sn3O4 [J]. Chem. J. Chinese Universities, 2021, 42(5): 1340. |
[6] | GE Haoying, DU Jianjun, LONG Saran, SUN Wen, FAN Jiangli, PENG Xiaojun. Surface Functionalized Gold Nanomaterials in Tumor Diagnosis and Treatment [J]. Chem. J. Chinese Universities, 2021, 42(4): 1202. |
[7] | WAN Yue, SONG Meina, ZHAO Meiting. Recent Progress of Two-dimensional Metal-organic Framework Nanosheets for Supercapacitor and Electrocatalysis Applications [J]. Chem. J. Chinese Universities, 2021, 42(2): 575. |
[8] | PI Yecan, ZHANG Ying, CHENG Zifang, HUANG Xiaoqing. Progress in Synthesis and Electrocatalysis of Two-Dimensional Metal Nanomaterials [J]. Chem. J. Chinese Universities, 2021, 42(2): 456. |
[9] | SHI Jiangwei, MENG Nannan, GUO Yamei, YU Yifu, ZHANG Bin. Recent Advances of Two-dimensional Materials for Electrocatalytic Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2021, 42(2): 492. |
[10] | WANG Jun, WANG Tie. Recent Progress in Functional Nanomaterials Based on Self-assembly Technology [J]. Chem. J. Chinese Universities, 2020, 41(3): 377. |
[11] | SHENG Bingchen, LI Cong, LIU Yingya, WANG Anjie, WANG Yao, ZHANG Jian, LIU Weixu. Microfluidic Synthesis of UiO-66 Metal-organic Frameworks Modified with Different Functional Groups† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1365. |
[12] | Long TIAN,Yan LONG,Shuyan SONG,Cheng WANG. Synthesis of Flower-like Structured Mn/CuO-CeO2 and the Catalytic Performance for CO Oxide Reaction † [J]. Chem. J. Chinese Universities, 2019, 40(12): 2549. |
[13] | SUN Lin, ZHANG Han, DU Yiping. Preparation of Surface Enhanced Raman Scattering Substrates Based on SBA-15 Material and the Detection of Enrofloxacin in Chicken and Chicken Feed† [J]. Chem. J. Chinese Universities, 2018, 39(3): 455. |
[14] | SUN Bing,JIANG Shang,WANG Runwei,NI Ling,QIU Shilun,ZHANG Zongtao. Preparation and Application of High Performance Lithium Titanate/reduced Graphene Oxide Nanocomposites for Lithium Batteries† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2767. |
[15] | TANG Keyun,LI Luoyuan,FU Limin,AI Xicheng,ZHANG Jianping. Effect of Crystal Matrix on Energy Transfer Mechanism in Rare-earth Upconversion Nanomaterials† [J]. Chem. J. Chinese Universities, 2018, 39(10): 2136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||