Chemical Journal of Chinese Universities ›› 2018, Vol. 39 ›› Issue (7): 1349-1363.doi: 10.7503/cjcu20180195
• Review • Previous Articles Next Articles
NIE Guangdi1,2,*(), ZHU Yun2, TIAN Di2, WANG Ce2,*(
)
Received:
2018-03-12
Online:
2018-07-10
Published:
2018-05-19
Contact:
NIE Guangdi,WANG Ce
E-mail:nieguangdi@163.com;cwang@jlu.edu.cn
CLC Number:
NIE Guangdi, ZHU Yun, TIAN Di, WANG Ce. Research Progress in the Electrospun Nanofiber-based Supercapacitor Electrode Materials†[J]. Chemical Journal of Chinese Universities, 2018, 39(7): 1349-1363.
Fig.2 Schematic illustration of the gradient electrospinning and controlled pyrolysis process(A), TEM image of Co3O4 mesoporous nanotubes(B), CV curves measured at scan rate from 20 mV/s to 1000 mV/s(C), specific capacitance as a function of scan rates(D) and long-term cycling performance of Co3O4 mesoporous nanotubes at 10 V/s(E)[52]^1. Distribution of different-molecular-weight PVA in the radial direction of composite nanofibors; 2. PVA and inorganic materials moving towards the higher-molecular-weight PVA with the temperature rising slowly; 3. the preliminary pyrohysed PVA and inorganic materials converge together in the tube walls; 4. formation of mesoporous nanotubes in different gas atmospheres.^Copyright 2015, Springer Nature.
Fig.3 Schematic illustration of the preparation process of MxCo3-xS4 nanotubes with electrospun PAN nanofibers as soft templates(A), TEM images of MnCo2S4 nanotubes(B) and electrochemical performance of MnCo2S4(a) and NiCo2S4(b) nanotubes, CV curves obtained at a scan rate of 2 mV/s(C), galvanostatic charge-discharge profiles tested at a current density of 5 A/g(D), specific capacitance at different current densities(E) and cycling stability(F)[65]^Ⅰ Growth progress of M-Co shell layer on PAN nanofiber; Ⅱ solution sulfidation progress; Ⅲ removal progress of template using DMF solvent.^Copyright 2015, John Wiley and Sons.
Fig.4 Schematic illustration of the preparation process(A), SEM image of hollow PANi nanofibers(B), CV curves measured at different scan rates(C) and specific capacitance as a function of current density(D)[77]^Copyright 2013, American Chemical Society.
Fig.5 TEM image(A, inset: the related SEM image) and specific capacitance as a function of current density of CNFs/Co3O4 heterostructures(B)[81]^Copyright 2015, American Chemical Society.
Fig.6 SEM image(MnO2 mass loading: 0.95 mg/cm2)(A, B) and galvanostatic charge-discharge profiles measured at a current density of 0.5 A/g of the core-shell MnO2/C nanofibers with two different diameters(C, D)[83]^(A) Mn-0.95/C-250; (B) Mn-0.95/C-650; (C) Mn/C-250; (D) Mn/C-650.^Copyright 2017, Royal Society of Chemistry.
[1] | Deng Y. F., Xie Y., Zou K. X., Ji X. L., J. Mater. Chem. A, 2016, 4(4), 1144—1173 |
[2] | Dong L., Chen Z. X., Yang D., Lu H. B., RSC Adv., 2013, 3(44), 21183—21191 |
[3] | Li X., Wei B. Q., Nano Energy, 2013, 2(2), 159—173 |
[4] | Conway B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, New York, Springer Science & Business Media, 1999 |
[5] | Augustyn V., Simon P., Dunn B., Energy Environ. Sci., 2014, 7(5), 1597—1614 |
[6] | Lu X. F., Wang C., Favier F., Pinna N., Adv. Energy Mater., 2017, 7(2), 1601301 |
[7] | Mai L. Q., Tian X. C., Xu X., Chang L., Xu L., Chem. Rev., 2014, 114(23), 11828—11862 |
[8] | Wei Q. L., Xiong F. Y., Tan S. S., Huang L., Lan E. H., Dunn B., Mai L. Q., Adv. Mater., 2017, 29(20), 1602300 |
[9] | Liu R., Duay J., Lee S. B., Chem. Commun., 2011, 47(5), 1384—1404 |
[10] | Li F., Li G., Chen H., Jia J. Q., Dong F., Hu Y. B., Shang Z. G., Zhang Y. X., J. Power Sources, 2015, 296, 86—91 |
[11] | Lu X. F., Chen X. Y., Zhou W., Tong Y. X., Li G. R., ACS Appl. Mater. Interfaces, 2015, 7(27), 14843—14850 |
[12] | Liu Y. C., Zhang N., Yu C. M., Jiao L. F., Chen J., Nano Lett., 2016, 16(5), 3321—3328 |
[13] | Liu C. K., Lai K., Liu W., Yao M., Sun R. J., Polym. Int., 2010, 58(12), 1341—1349 |
[14] | Inagaki M., Yang Y., Kang F. Y., Adv. Mater., 2012, 24(19), 2547—2566 |
[15] | Mao X. W., Hatton T. A., Rutledge G. C., Curr. Org. Chem., 2013, 17(13), 1390—1401 |
[16] | Wang J. G., Yang Y., Huang Z. H., Kang F. Y., J. Mater. Chem., 2012, 22(33), 16943—16949 |
[17] | Kim C., Yang K. S., Kojima M., Yoshida K., Kim Y. J., Kim Y. A., Endo M., Adv. Funct. Mater., 2006, 16(18), 2393—2397 |
[18] | Zhang B., Xu Z. L., He Y. B., Abouali S., Garakani M. A., Heidari E. K., Kang F. Y., Kim J. K., Nano Energy, 2014, 4(3), 88—96 |
[19] | Abouali S., Garakani M. A., Zhang B., Luo H., Xu Z. L., Huang J. Q., Huang J. Q., Kim J. K., J. Mater. Chem. A, 2014, 2(40), 16939—16944 |
[20] | Liu T. Y., Zhang F., Song Y., Li Y., J. Mater. Chem. A, 2017, 5(34), 17705—17733 |
[21] | Liu Y., Zhou J. Y., Chen L. L., Zhang P., Fu W. B., Zhao H., Ma Y. F., Pan X. J., Zhang Z. X., Han W. H., Xie E. Q., ACS Appl. Mater. Interfaces, 2015, 7(42), 23515—23520 |
[22] | Kim C., Ngoc B. T. N., Yang K. S., Kojima M., Kim Y. A., Kim Y. J., Endo M., Yang S. C., Adv. Mater., 2007, 19(17), 2341—2346 |
[23] | Lee D., Jung J. Y., Jung M. J., Lee Y. S., Chem. Eng. J., 2015, 263, 62—70 |
[24] | Chen L. F., Lu Y., Yu L., Lou X. W., Energy Environ. Sci., 2017, 10(8), 1777—1783 |
[25] | Abeykoon N. C., Bonso J. S., Ferraris J. P., RSC Adv., 2015, 5(26), 19865—19873 |
[26] | Ju Y. W., Park S. H., Jung H. R., Lee W. J., J. Electrochem. Soc., 2009, 156(6), A489—A494 |
[27] | Le T. H., Ying Y., Huang Z. H., Kang F. Y., J. Power Sources, 2015, 278, 683—692 |
[28] | An G. H., Koo B. R., Ahn H. J., Phys. Chem. Chem. Phys., 2016, 18(9), 6587—6594 |
[29] | Kim C., Yang K. S., Appl. Phys. Lett., 2003, 83(6), 1216—1218 |
[30] | Ma C., Li Y. J., Shi J. L., Song Y., Liu L., Chem. Eng. J., 2014, 249, 216—225 |
[31] | Zhi M. J., Liu S. H., Hong Z. L., Wu N. Q., RSC Adv., 2014, 4(82), 43619—43623 |
[32] | Kou T. Y., Yao B., Liu T. Y., Li Y., J. Mater. Chem. A, 2017, 5(33), 17151—17173 |
[33] | Li X. L., Zhao Y. J., Bai Y., Zhao X. Y., Wang R. H., Huang Y. C., Liang Q. H., Huang Z. H., Electrochim. Acta, 2017, 230, 445—453 |
[34] | Tian X. D., Zhao N., Song Y., Wang K., Xu D. F., Li X., Guo Q. G., Liu L., Electrochim. Acta, 2015, 185, 40—51 |
[35] | Jung K. H., Deng W. J., Jr D. W. S., Ferraris J. W., Electrochem. Commun., 2012, 23, 149—152 |
[36] | Tran C., Kalra V., J. Power Sources, 2013, 235, 289—296 |
[37] | Liang Q. H., Ye L., Xu Q., Huang Z. H., Kang F. Y., Yang Q. H., , 2015, 94, 342—348 |
[38] | Lai C. C., Lo C. T., RSC Adv., 2015, 5(49), 38868—38872 |
[39] | Hyun T. S., Tuller H. L., Youn D. Y., Kim H. G., Kim I. D., J. Mater. Chem., 2010, 20(41), 9172—9179 |
[40] | Wang J. G., Kang F. Y., Wei B. Q., Prog. Mater. Sci., 2015, 74, 51—124 |
[41] | Bhagwan J., Sahoo A., Yadav K. L., Sharma Y., Electrochim. Acta, 2015, 174, 992—1001 |
[42] | Lee E., Lee T., Kim B. S., J. Power Sources, 2014, 255, 335—340 |
[43] | Lee J. H., Yang T. Y., Kang H. Y., Nam D. H., Kim N. R., Lee Y. Y., Lee S. H., Joo Y. C., J. Mater. Chem. A, 2014, 2(20), 7197—7204 |
[44] | Xu K. B., Li S. J., Yang J. M., Hu J. Q., J. Colloid. Interf. Sci., 2018, 513, 448—454 |
[45] | Yan Y., Li B., Guo W., Pang H., Xue H. G., J. Power Sources, 2016, 329, 148—169 |
[46] | Liu M. S., Su B., Tang X., Jiang X. C., Yu A. B., Adv. Energy Mater., 2017, 7(23), 1700885 |
[47] | Wee G., Soh H. Z., Cheah Y. L., Mhaisalkar S. G., Srinivasan M., J. Mater. Chem., 2010, 20(32), 6720—6725 |
[48] | Lala N. L., Jose R., Yusoff M. M., Ramakrishna S., J. Nanopart. Res., 2012, 14(11), 1201 |
[49] | Ren B., Fan M. Q., Liu Q., Wang J., Song D. L., Bai X. F., Electrochim. Acta, 2013, 92, 197—204 |
[50] | Kundu M., Liu L. F., Mater. Lett., 2015, 144, 114—118 |
[51] | Ren B., Fan M. Q., Wang J., Jing X. Y., Bai X. F., J. Electrochem. Soc., 2013, 160(9), E79—E83 |
[52] | Niu C. J., Meng J. S., Wang X. P., Han C. H., Yan M. Y., Zhao K. N., Xu X. M., Ren W. H., Zhao Y. L., Xu L., Zhang Q. J., Zhao D. Y., Mai L. Q., Nat. Commun., 2015, 6, 7402 |
[53] | Qu Q. T., Yang S. B., Feng X. L., Adv. Mater., 2011, 23(46), 5574—5580 |
[54] | Xia Q. Y., Xu M., Xia H., Xie J. P., Chem. Nano Mat., 2016, 2(7), 588—600 |
[55] | Binitha G., Soumya M. S., Madhavan A. A., Praveen P., Balakrishnan A., Subramanian K. R. V., Reddy M. V., Nair S. V., Nair A. S., Sivakumar N., J. Mater. Chem. A, 2013, 1(38), 11698—11704 |
[56] | Liu B., Tan D. S., Wang X. F., Chen D., Shen G. Z., Small, 2013, 9(11), 1998—2004 |
[57] | Zhou G., Zhu J., Chen Y. J., Mei L., Duan X. C., Zhang G. H., Chen L. B., Wang T. H., Lu B. A., Electrochim. Acta, 2014, 123, 450—455 |
[58] | Li L. L., Peng S. J., Cheah Y., Teh P., Wang J., Wee G., Ko Y., Wong C., Srinivasan M., Chem. Eur. J., 2013, 19(19), 5892—5898 |
[59] | Peng S. J., Li L. L., Hu Y. X., Srinivasan M., Cheng F. Y., Chen J., Ramakrishna S., ACS Nano, 2015, 9(2), 1945—1954 |
[60] | Bhagwan J., Sivasankaran V., Yadav K. L., Sharma Y., J. Power Sources, 2016, 327, 29—37 |
[61] | Wang Q. F., Chen D., Zhang D. H., RSC Adv., 2015, 5(117), 96448—96454 |
[62] | Alkhalaf S., Ranaweera C. K., Kahol P. K., Siam K., Adhikari H., Mishra S. R., Perez F., Gupta B. K., Ramasamy K., Gupta R. K., J. Alloy. Compd., 2017, 692, 59—66 |
[63] | Yu X. Y., Yu L., Lou X. W., Adv. Energy Mater., 2016, 6(3), 1501333 |
[64] | Zhu H., Zhang J. F., Yanzhang R. P., Du M. L., Wang Q. F., Gao G. H., Wu J. D., Wu G. M., Zhang M., Liu B., Yao J. M., Zhang X. W., Adv. Mater., 2015, 27(32), 4752—4759 |
[65] | Chen Y. M., Li Z., Lou X. W., Angew. Chem. Int. Ed., 2015, 54(36), 10521—10524 |
[66] | Choi D., Kumta P. N., J. Electrochem. Soc., 2006, 153(12), A2298—A2303 |
[67] | Liu T. C., Pell W. G., Conway B. E., J. Electrochem. Soc., 1998, 145(6), 1882—1888 |
[68] | Zhao J. X., Liu B., Xu S., Yang J., Lu Y., J. Alloy. Compd., 2015, 651, 785—792 |
[69] | Xu Y. L., Wang J., Shen L. F., Dou H., Zhang X. G., Electrochim. Acta, 2015, 173, 680—686 |
[70] | Wang J. F., Wang J. R., Kong Z., Lv K. L., Teng C., Zhu Y., Adv. Mater., 2017, 29(45), 1703044 |
[71] | Meng Q. F., Cai K. F., Chen Y. X., Chen L. D., Nano Energy, 2017, 36, 268—285 |
[72] | Wang K., Wu H. P., Meng Y. N., Wei Z. X., Small, 2014, 10(1), 14—31 |
[73] | Ni W., Cheng J. L., Li X. D., Gu G. F., Huang L., Guan Q., Yuan D. M., Wang B., RSC Adv., 2015, 5(12), 9221—9227 |
[74] | Simotwo S. K., Delre C., Kalra V., ACS Appl. Mater. Interfaces, 2016, 8(33), 21261—21269 |
[75] | Lee K. M., Kim M., Lee E., Baeck S. H., Sang E. S., Electrochim. Acta, 2016, 213, 124—131 |
[76] | Miao F. J., Shao C. L., Li X. H., Lu N., Wang K. X., Zhang X., Liu Y. C., Electrochim. Acta, 2015, 176, 293—300 |
[77] | Miao Y. E., Fan W., Chen D., Liu T. X., ACS Appl. Mater. Interfaces, 2013, 5(10), 4423—4428 |
[78] | Laforgue A., J. Power Sources, 2011, 196(1), 559—564 |
[79] | Dong Q., Wang G., Hu H., Yang J., Qian B. Q., Ling Z., Qiu J. S., J. Power Sources, 2013, 243, 350—353 |
[80] | An G. H., Ahn H. J., Hong W. K., J. Power Sources, 2015, 274, 536—541 |
[81] | Abouali S., Garakani M. A., Zhang B., Xu Z. L., Heidari E. K., Huang J. Q., Huang J. Q., Kim J. K., ACS Appl. Mater. Interfaces, 2015, 7(24), 13503—13511 |
[82] | Zhou D., Lin H. M., Zhang F., Niu H., Cui L. R., Wang Q., Qu F. Y., Electrochim. Acta, 2015, 161, 427—435 |
[83] | Saito Y., Meguro M., Ashizawa M., Waki K., Yuksel R., Unalan H. E., Matsumoto H., RSC Adv., 2017, 7(20), 12351—12358 |
[84] | Samuel E., Joshi B., Jo H. S., Kim Y. I., An S., Swihart M. T., Yun J. M., Kim K. H., Yoon S. S., Chem. Eng. J., 2017, 328, 776—784 |
[85] | Ge J. L., Qu Y. S., Cao L. T., Wang F., Dou L. Y., Yu J. Y., Ding B., J. Mater. Chem. A, 2016, 4(20), 7795—7804 |
[86] | Lei D. Y., Li X. D., Seo M. K., Khil M. S., Kim H. Y., Kim B. S., Polymer, 2017, 132, 31—40 |
[87] | Wang F. F., Sun S. G., Xu Y. Q., Wang T., Yu R. J., Li H. J., Sci. Rep., 2017, 7, 4707 |
[88] | Lai F. L., Huang Y. P., Miao Y. E., Liu T. X., Electrochim. Acta, 2015, 174, 456—463 |
[89] | Liu Y., Zhou J. Y., Fu W. B., Zhang P., Pan X. J., Xie E. Q., , 2017, 114, 187—197 |
[90] | Xu J. L., Zhang L., Xu G. C., Sun Z. P., Zhang C., Ma X., Qi C. L., Zhang L., Jia D. Z., Appl. Surf. Sci., 2018, 434, 112—119 |
[91] | Kumuthini R., Ramachandran R., Therese H. A., Wang F., J. Alloy. Compd., 2017, 705, 624—630 |
[92] | Liu Y. K., Jiang G. H., Sun S. Q., Xu B., Zhou J. Y., Zhang Y., Yao J. M., J. Alloy. Compd., 2018, 731, 560—568 |
[93] | Wu Y. G., Ran F., J. Power Sources, 2017, 344, 1—10 |
[94] | Ren Y. Q., Dai J., Pang B., Liu X., Yu J., Electrochim. Acta, 2015, 176, 402—409 |
[95] | Miao F. J., Shao C. L., Li X. H., Lu N., Wang K. X., Zhang X., Liu Y. C., Energy, 2016, 95, 233—241 |
[96] | He S. J., Hu X. W., Chen S. L., Hu H., Hanif M., Hou H. Q., J. Mater. Chem., 2012, 22(11), 5114—5120 |
[97] | Yan X. B., Tai Z. X., Chen J. T., Xue Q. J., Nanoscale, 2011, 3(1), 212—216 |
[98] | Kim S. Y., Kim B. H., J. Power Sources, 2016, 328, 219—227 |
[99] | Jia J. F., Luo F. Y., Gao C. J., Suo C., Wang X. C., Song H. Z., Hu X., Ceram. Int., 2014, 40(5), 6973—6977 |
[100] | Zhu J., Xu Z., Lu B. A., Nano Energy, 2014, 7, 114—123 |
[101] | Nie G. D., Li S. K., Lu X. F., Wang C., Chem. J. Chinese Universities, 2013, 34(1), 15—29 |
(乜广弟,力尚昆,卢晓峰,王策.高等学校化学学报, 2013, 34(1), 15—29 | |
[102] | Li D., Xia Y. N., Adv. Mater., 2004, 16(14), 1151—1170 |
[103] | Greiner A., Wendroff J. H., Angew. Chem. Int. Ed., 2007, 46(30), 5670—5703 |
[104] | Nie G. D., Lu X. F., Lei J. Y., Jiang Z. Q., Wang C., J. Mater. Chem. A, 2014, 2(37), 15495—15501 |
[105] | Nie G. D., Lu X. F., Chi M. Q., Zhu Y., Yang Z. Z., Song N., Wang C., Electrochim. Acta, 2017, 231, 36—43 |
[106] | Radhamani A. V., Shareef K. M., Rao M. S. R., ACS Appl. Mater. Interfaces, 2016, 8(44), 30531—30542 |
[107] | Gong D. C., Zhu J., Lu B. A., RSC Adv., 2016, 6(54), 49173—49178 |
[108] | Jiang P. C., Wang Q., Dai J. F., Li W. X., Wei Z. Q., Mater. Lett., 2017, 188, 69—72 |
[109] | Harilal M., Vidyadharan B., Misnon I. I., Anilkumar G. M., Lowe A., Ismail J., Yusoff M. M., Jose R., ACS Appl. Mater. Interfaces, 2017, 9(12), 10730—10742 |
[110] | Vijayan B. L., Krishnan S. G., Zain N. K. M., Harilal M., Yar A., Misnon I. I., Dennis J. O., Yusoff M. M., Jose R., Chem. Eng. J., 2017, 327, 962—972 |
[111] | Niu H., Zhou D., Yang X., Li X., Wang Q., Qu F. Y., J. Mater. Chem. A, 2015, 3(36), 18413—18421 |
[112] | Xu K. B., Li S. J., Yang J. M., Xu H. Y., Hu J. Q., J. Alloy. Compd., 2016, 678, 120—125 |
[113] | Agyemang F. O., Kim H., Mater. Sci. Eng. B, 2016, 211, 141—148 |
[114] | Huang Y. P., Miao Y. E., Lu H. Y., Liu T. X., Chem. Eur. J., 2015, 21(28), 10100—10108 |
[115] | Lu X. Y., Shen C., Zhang Z. Y., Barrios E., Zhai L., ACS Appl. Mater. Interfaces, 2018, 10(4), 4041—4049 |
[116] | Tong L. Y., Liu J., Boyer S. M., Sonnenberg L. A., Fox M. T., Ji D. S., Feng J., Bernier W. E., Jones Jr. W. E., Electrochim. Acta, 2017, 224, 133—141 |
[117] | Zhou X. H., Shang C. Q., Gu L., Dong S. M., Chen X., Han P. X., Li L. F., Yao J. H., Liu Z. H., Xu H. X., Zhu Y. W., Cui G. L., ACS Appl. Mater. Interfaces, 2011, 3(8), 3058—3063 |
[118] | Zhou J. Y., Chen J. Y., Han S., Zhao H., Bai J. L., Yang Z. Y., Mu X. M., Liu Y., BianD. M., Sun G. Z., Zhang Z. X., Pan X. J., Xie E. Q., , 2017, 111, 502—512 |
[119] | Agyemang F. O., Tomboc G. M., Kwofie S., Kim H., Electrochim. Acta, 2018, 259, 1110—1119 |
[120] | Miao F. J., Shao C. L., Li X. H., Wang K. X., Lu N., Liu Y. C., ACS Sustainable Chem. Eng., 2016, 4(3), 1689—1696 |
[121] | Iqbal N., Wang X. F., Babar A. A., Zainab G., Yu J. Y., Ding B., Sci. Rep., 2017, 7, 15153 |
[122] | Zhang J., Su L. J., Ma L., Zhao D. Y., Qin C. L., Jin Z., Zhao K., J. Electroanal. Chem., 2017, 790, 40—49 |
[123] | Zhou G. Y., Xiong T. R., He S. J., Li Y. H., Zhu Y. M., Hou H. Q., J. Power Sources, 2016, 317, 57—64 |
[124] | Chen L., Zhu J. H., Chem. Commun., 2014, 50(60), 8253—8256 |
[125] | Lai F. L., Miao Y. E, Huang Y. P., Chung T. S., Liu T. X., J. Phys. Chem. C, 2015, 119(24), 13442—13450 |
[126] | Iqbal N., Wang X. F., Babar A. A., Yu J. Y., Ding B., J. Colloid Interf. Sci., 2016, 476, 87—93 |
[127] | Lee D. G., Kim Y. A., Kim B. H., , 2016, 107, 783—791 |
[128] | Chen L., Chen L. N., Ai Q., Li D. P., Si P. C., Feng J. K., Zhang L., Li Y. H., Lou J., Ci L. J., Chem. Eng. J., 2018, 334, 184—190 |
[129] | Shi M. J., Zhao L. P., Song X. F., Liu J., Zhang P., Gao L., ACS Appl. Mater. Interfaces, 2016, 8(47), 32460—32467 |
[130] | Huang J., Wei J. C., Xu Y. Z., Xiao Y. B., Chen Y. W., J. Mater. Chem. A, 2017, 5(44), 23349—23360 |
[131] | Liu Y. K., Jiang G. H., Sun S. Q., Xu B., Zhou J. Y., Zhang Y., Yao J. M., J. Electroanal. Chem., 2017, 804, 212—219 |
[132] | Nie G. D., Lu X. F., Chi M. Q., Gao M., Wang C., J. Colloid Interf. Sci., 2018, 509, 235—244 |
[1] | WANG Xia, LIU Yanji, JIA Yongfeng, JI Lei, HU Quanli, DUAN Limei, LIU Jinghai. Preparative Chemistry of N-containing Porous Carbon Nanofibers for Capacity Improvement in Lithium-sulfur Battery † [J]. Chemical Journal of Chinese Universities, 2020, 41(4): 829-837. |
[2] | KONG Jinfeng, ZHU Yuzhang, JIN Jian. Sulfonated Cellulose Nanofibers Film Supported Nanofiltration Membrane for High-flux and High-rejection Desalination † [J]. Chemical Journal of Chinese Universities, 2020, 41(4): 690-696. |
[3] | JI Tianyi, LIU Xiaoxu, ZHAO Jiupeng, LI Yao. Synthesis and Lithium-storage Characteristics of Three-dimensional Cross-linked Graphene Nanofibers † [J]. Chemical Journal of Chinese Universities, 2020, 41(4): 821-828. |
[4] | QIN Chunping, WANG Xianliu, TANG Han, YI Bingcheng, LIU Chang, ZHANG Yanzhong. Osteogenesis-promoting Effects of the Electrospun Nanofibers Containing Decellularized Bone Matrix † [J]. Chemical Journal of Chinese Universities, 2020, 41(4): 780-788. |
[5] | GUAN Fanglan,LI Xin,ZHANG Qun,GONG Yan,LIN Ziyu,CHEN Yao,WANG Lejun. Fabrication and Capacitance Performance of Laser-machined RGO/MWCNT/CF In-plane Flexible Micro-supercapacitor † [J]. Chemical Journal of Chinese Universities, 2020, 41(2): 300-307. |
[6] | HAN Zhiying,LI Youji,CHEN Feitai,TANG Senpei,WANG Peng. Preparation of ZnO/Ag2O Nanofibers by Coaxial Electrospinning and Study of Their Photocatalytic Properties † [J]. Chemical Journal of Chinese Universities, 2020, 41(2): 308-316. |
[7] | LI Botian,SHAO Wei,XIAO Da,ZHOU Xue,DONG Junwei,TANG Liming. Polypyrrole Nanowire Gels Based on Templating Fabrication and Their Energy Storage and Electrochemical Sensing Properties † [J]. Chemical Journal of Chinese Universities, 2020, 41(1): 183-190. |
[8] | WANG Yongpeng,XU Zibo,LIU Mengzhu,ZHANG Haibo,JIANG Zhenhua. Non-enzymatic Glucose Sensor Based on the Electrospun Porous Foamy Copper Oxides Micro-nanofibers† [J]. Chemical Journal of Chinese Universities, 2019, 40(6): 1310-1316. |
[9] | CAI Jiao,YU Qiongwei,HE Xiaomei,XU Jing,DING Qiong,FENG Yuqi. Preparation of SiW11 Incorporated SiO2 Nanofibers(SiW11/SiO2) and Its Application in the Analysis of Polyamines in Arabidopsis† [J]. Chemical Journal of Chinese Universities, 2019, 40(5): 901-908. |
[10] | ZHAO Yuxuan,CHEN Yanjun,PAN Guxin,WANG Chang,PENG Zhenbo,SUN Zongxu,LIANG Yongri,SHI Qisong. Preparation and Performance of Novel Tb-PEG+Eu-PEG/PANI/PAN Luminescent-electrical-phase Change Composite Fibers by Electrospinning† [J]. Chemical Journal of Chinese Universities, 2019, 40(4): 824-831. |
[11] | GAO Ningxiao,XU Yulong,LIU Yong. Preparation of Carbon Dots from Soy Milk Powder and Fluorescent Nanofibers Containing Carbon Dots† [J]. Chemical Journal of Chinese Universities, 2019, 40(3): 555-559. |
[12] | LIU Ben,ZHANG Xingying,CHEN Shaoyun,HU Chenglong. Preparation and Electrochemical Energy Storage Performance of One Dimensional Orderly Polyaniline Nanowires Array† [J]. Chemical Journal of Chinese Universities, 2019, 40(3): 498-507. |
[13] | ZHANG Xinmu,CUI Xiangxu,YAOMA Kangyue,LI Tingting,ZHANG Zhiming. Electrospinning Preparation and Photocatalytic Activity of H4SiW12O40/Ethylene Vinyl Alcohol Copolymer Nanofibrous Membrane† [J]. Chemical Journal of Chinese Universities, 2019, 40(2): 372-378. |
[14] | LIU Hao,ZHAO Dingxuan,GONG Guodong,ZHANG Zhuxin,JIA Tuo,CHEN Hanzhe. Effect of Temperature on Morphology and Supercapacitor Performance of Carbon Nano-spheres† [J]. Chemical Journal of Chinese Universities, 2019, 40(1): 18-23. |
[15] | LI Long,HU Hongli,DING Shujiang. Facile Synthesis of Scale-like CoMn2O4 Nanosheets on Reduced Graphene Oxide for Supercapacitors† [J]. Chemical Journal of Chinese Universities, 2018, 39(9): 2010-2016. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||