Chem. J. Chinese Universities ›› 2018, Vol. 39 ›› Issue (7): 1349.doi: 10.7503/cjcu20180195
• Review • Previous Articles Next Articles
NIE Guangdi1,2,*(), ZHU Yun2, TIAN Di2, WANG Ce2,*()
Received:
2018-03-12
Online:
2018-07-10
Published:
2018-05-19
Contact:
NIE Guangdi,WANG Ce
E-mail:nieguangdi@163.com;cwang@jlu.edu.cn
CLC Number:
TrendMD:
NIE Guangdi, ZHU Yun, TIAN Di, WANG Ce. Research Progress in the Electrospun Nanofiber-based Supercapacitor Electrode Materials†[J]. Chem. J. Chinese Universities, 2018, 39(7): 1349.
Fig.2 Schematic illustration of the gradient electrospinning and controlled pyrolysis process(A), TEM image of Co3O4 mesoporous nanotubes(B), CV curves measured at scan rate from 20 mV/s to 1000 mV/s(C), specific capacitance as a function of scan rates(D) and long-term cycling performance of Co3O4 mesoporous nanotubes at 10 V/s(E)[52]^1. Distribution of different-molecular-weight PVA in the radial direction of composite nanofibors; 2. PVA and inorganic materials moving towards the higher-molecular-weight PVA with the temperature rising slowly; 3. the preliminary pyrohysed PVA and inorganic materials converge together in the tube walls; 4. formation of mesoporous nanotubes in different gas atmospheres.^Copyright 2015, Springer Nature.
Fig.3 Schematic illustration of the preparation process of MxCo3-xS4 nanotubes with electrospun PAN nanofibers as soft templates(A), TEM images of MnCo2S4 nanotubes(B) and electrochemical performance of MnCo2S4(a) and NiCo2S4(b) nanotubes, CV curves obtained at a scan rate of 2 mV/s(C), galvanostatic charge-discharge profiles tested at a current density of 5 A/g(D), specific capacitance at different current densities(E) and cycling stability(F)[65]^Ⅰ Growth progress of M-Co shell layer on PAN nanofiber; Ⅱ solution sulfidation progress; Ⅲ removal progress of template using DMF solvent.^Copyright 2015, John Wiley and Sons.
Fig.4 Schematic illustration of the preparation process(A), SEM image of hollow PANi nanofibers(B), CV curves measured at different scan rates(C) and specific capacitance as a function of current density(D)[77]^Copyright 2013, American Chemical Society.
Fig.5 TEM image(A, inset: the related SEM image) and specific capacitance as a function of current density of CNFs/Co3O4 heterostructures(B)[81]^Copyright 2015, American Chemical Society.
Fig.6 SEM image(MnO2 mass loading: 0.95 mg/cm2)(A, B) and galvanostatic charge-discharge profiles measured at a current density of 0.5 A/g of the core-shell MnO2/C nanofibers with two different diameters(C, D)[83]^(A) Mn-0.95/C-250; (B) Mn-0.95/C-650; (C) Mn/C-250; (D) Mn/C-650.^Copyright 2017, Royal Society of Chemistry.
[1] | Deng Y. F., Xie Y., Zou K. X., Ji X. L., J. Mater. Chem. A, 2016, 4(4), 1144—1173 |
[2] | Dong L., Chen Z. X., Yang D., Lu H. B., RSC Adv., 2013, 3(44), 21183—21191 |
[3] | Li X., Wei B. Q., Nano Energy, 2013, 2(2), 159—173 |
[4] | Conway B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, New York, Springer Science & Business Media, 1999 |
[5] | Augustyn V., Simon P., Dunn B., Energy Environ. Sci., 2014, 7(5), 1597—1614 |
[6] | Lu X. F., Wang C., Favier F., Pinna N., Adv. Energy Mater., 2017, 7(2), 1601301 |
[7] | Mai L. Q., Tian X. C., Xu X., Chang L., Xu L., Chem. Rev., 2014, 114(23), 11828—11862 |
[8] | Wei Q. L., Xiong F. Y., Tan S. S., Huang L., Lan E. H., Dunn B., Mai L. Q., Adv. Mater., 2017, 29(20), 1602300 |
[9] | Liu R., Duay J., Lee S. B., Chem. Commun., 2011, 47(5), 1384—1404 |
[10] | Li F., Li G., Chen H., Jia J. Q., Dong F., Hu Y. B., Shang Z. G., Zhang Y. X., J. Power Sources, 2015, 296, 86—91 |
[11] | Lu X. F., Chen X. Y., Zhou W., Tong Y. X., Li G. R., ACS Appl. Mater. Interfaces, 2015, 7(27), 14843—14850 |
[12] | Liu Y. C., Zhang N., Yu C. M., Jiao L. F., Chen J., Nano Lett., 2016, 16(5), 3321—3328 |
[13] | Liu C. K., Lai K., Liu W., Yao M., Sun R. J., Polym. Int., 2010, 58(12), 1341—1349 |
[14] | Inagaki M., Yang Y., Kang F. Y., Adv. Mater., 2012, 24(19), 2547—2566 |
[15] | Mao X. W., Hatton T. A., Rutledge G. C., Curr. Org. Chem., 2013, 17(13), 1390—1401 |
[16] | Wang J. G., Yang Y., Huang Z. H., Kang F. Y., J. Mater. Chem., 2012, 22(33), 16943—16949 |
[17] | Kim C., Yang K. S., Kojima M., Yoshida K., Kim Y. J., Kim Y. A., Endo M., Adv. Funct. Mater., 2006, 16(18), 2393—2397 |
[18] | Zhang B., Xu Z. L., He Y. B., Abouali S., Garakani M. A., Heidari E. K., Kang F. Y., Kim J. K., Nano Energy, 2014, 4(3), 88—96 |
[19] | Abouali S., Garakani M. A., Zhang B., Luo H., Xu Z. L., Huang J. Q., Huang J. Q., Kim J. K., J. Mater. Chem. A, 2014, 2(40), 16939—16944 |
[20] | Liu T. Y., Zhang F., Song Y., Li Y., J. Mater. Chem. A, 2017, 5(34), 17705—17733 |
[21] | Liu Y., Zhou J. Y., Chen L. L., Zhang P., Fu W. B., Zhao H., Ma Y. F., Pan X. J., Zhang Z. X., Han W. H., Xie E. Q., ACS Appl. Mater. Interfaces, 2015, 7(42), 23515—23520 |
[22] | Kim C., Ngoc B. T. N., Yang K. S., Kojima M., Kim Y. A., Kim Y. J., Endo M., Yang S. C., Adv. Mater., 2007, 19(17), 2341—2346 |
[23] | Lee D., Jung J. Y., Jung M. J., Lee Y. S., Chem. Eng. J., 2015, 263, 62—70 |
[24] | Chen L. F., Lu Y., Yu L., Lou X. W., Energy Environ. Sci., 2017, 10(8), 1777—1783 |
[25] | Abeykoon N. C., Bonso J. S., Ferraris J. P., RSC Adv., 2015, 5(26), 19865—19873 |
[26] | Ju Y. W., Park S. H., Jung H. R., Lee W. J., J. Electrochem. Soc., 2009, 156(6), A489—A494 |
[27] | Le T. H., Ying Y., Huang Z. H., Kang F. Y., J. Power Sources, 2015, 278, 683—692 |
[28] | An G. H., Koo B. R., Ahn H. J., Phys. Chem. Chem. Phys., 2016, 18(9), 6587—6594 |
[29] | Kim C., Yang K. S., Appl. Phys. Lett., 2003, 83(6), 1216—1218 |
[30] | Ma C., Li Y. J., Shi J. L., Song Y., Liu L., Chem. Eng. J., 2014, 249, 216—225 |
[31] | Zhi M. J., Liu S. H., Hong Z. L., Wu N. Q., RSC Adv., 2014, 4(82), 43619—43623 |
[32] | Kou T. Y., Yao B., Liu T. Y., Li Y., J. Mater. Chem. A, 2017, 5(33), 17151—17173 |
[33] | Li X. L., Zhao Y. J., Bai Y., Zhao X. Y., Wang R. H., Huang Y. C., Liang Q. H., Huang Z. H., Electrochim. Acta, 2017, 230, 445—453 |
[34] | Tian X. D., Zhao N., Song Y., Wang K., Xu D. F., Li X., Guo Q. G., Liu L., Electrochim. Acta, 2015, 185, 40—51 |
[35] | Jung K. H., Deng W. J., Jr D. W. S., Ferraris J. W., Electrochem. Commun., 2012, 23, 149—152 |
[36] | Tran C., Kalra V., J. Power Sources, 2013, 235, 289—296 |
[37] | Liang Q. H., Ye L., Xu Q., Huang Z. H., Kang F. Y., Yang Q. H., , 2015, 94, 342—348 |
[38] | Lai C. C., Lo C. T., RSC Adv., 2015, 5(49), 38868—38872 |
[39] | Hyun T. S., Tuller H. L., Youn D. Y., Kim H. G., Kim I. D., J. Mater. Chem., 2010, 20(41), 9172—9179 |
[40] | Wang J. G., Kang F. Y., Wei B. Q., Prog. Mater. Sci., 2015, 74, 51—124 |
[41] | Bhagwan J., Sahoo A., Yadav K. L., Sharma Y., Electrochim. Acta, 2015, 174, 992—1001 |
[42] | Lee E., Lee T., Kim B. S., J. Power Sources, 2014, 255, 335—340 |
[43] | Lee J. H., Yang T. Y., Kang H. Y., Nam D. H., Kim N. R., Lee Y. Y., Lee S. H., Joo Y. C., J. Mater. Chem. A, 2014, 2(20), 7197—7204 |
[44] | Xu K. B., Li S. J., Yang J. M., Hu J. Q., J. Colloid. Interf. Sci., 2018, 513, 448—454 |
[45] | Yan Y., Li B., Guo W., Pang H., Xue H. G., J. Power Sources, 2016, 329, 148—169 |
[46] | Liu M. S., Su B., Tang X., Jiang X. C., Yu A. B., Adv. Energy Mater., 2017, 7(23), 1700885 |
[47] | Wee G., Soh H. Z., Cheah Y. L., Mhaisalkar S. G., Srinivasan M., J. Mater. Chem., 2010, 20(32), 6720—6725 |
[48] | Lala N. L., Jose R., Yusoff M. M., Ramakrishna S., J. Nanopart. Res., 2012, 14(11), 1201 |
[49] | Ren B., Fan M. Q., Liu Q., Wang J., Song D. L., Bai X. F., Electrochim. Acta, 2013, 92, 197—204 |
[50] | Kundu M., Liu L. F., Mater. Lett., 2015, 144, 114—118 |
[51] | Ren B., Fan M. Q., Wang J., Jing X. Y., Bai X. F., J. Electrochem. Soc., 2013, 160(9), E79—E83 |
[52] | Niu C. J., Meng J. S., Wang X. P., Han C. H., Yan M. Y., Zhao K. N., Xu X. M., Ren W. H., Zhao Y. L., Xu L., Zhang Q. J., Zhao D. Y., Mai L. Q., Nat. Commun., 2015, 6, 7402 |
[53] | Qu Q. T., Yang S. B., Feng X. L., Adv. Mater., 2011, 23(46), 5574—5580 |
[54] | Xia Q. Y., Xu M., Xia H., Xie J. P., Chem. Nano Mat., 2016, 2(7), 588—600 |
[55] | Binitha G., Soumya M. S., Madhavan A. A., Praveen P., Balakrishnan A., Subramanian K. R. V., Reddy M. V., Nair S. V., Nair A. S., Sivakumar N., J. Mater. Chem. A, 2013, 1(38), 11698—11704 |
[56] | Liu B., Tan D. S., Wang X. F., Chen D., Shen G. Z., Small, 2013, 9(11), 1998—2004 |
[57] | Zhou G., Zhu J., Chen Y. J., Mei L., Duan X. C., Zhang G. H., Chen L. B., Wang T. H., Lu B. A., Electrochim. Acta, 2014, 123, 450—455 |
[58] | Li L. L., Peng S. J., Cheah Y., Teh P., Wang J., Wee G., Ko Y., Wong C., Srinivasan M., Chem. Eur. J., 2013, 19(19), 5892—5898 |
[59] | Peng S. J., Li L. L., Hu Y. X., Srinivasan M., Cheng F. Y., Chen J., Ramakrishna S., ACS Nano, 2015, 9(2), 1945—1954 |
[60] | Bhagwan J., Sivasankaran V., Yadav K. L., Sharma Y., J. Power Sources, 2016, 327, 29—37 |
[61] | Wang Q. F., Chen D., Zhang D. H., RSC Adv., 2015, 5(117), 96448—96454 |
[62] | Alkhalaf S., Ranaweera C. K., Kahol P. K., Siam K., Adhikari H., Mishra S. R., Perez F., Gupta B. K., Ramasamy K., Gupta R. K., J. Alloy. Compd., 2017, 692, 59—66 |
[63] | Yu X. Y., Yu L., Lou X. W., Adv. Energy Mater., 2016, 6(3), 1501333 |
[64] | Zhu H., Zhang J. F., Yanzhang R. P., Du M. L., Wang Q. F., Gao G. H., Wu J. D., Wu G. M., Zhang M., Liu B., Yao J. M., Zhang X. W., Adv. Mater., 2015, 27(32), 4752—4759 |
[65] | Chen Y. M., Li Z., Lou X. W., Angew. Chem. Int. Ed., 2015, 54(36), 10521—10524 |
[66] | Choi D., Kumta P. N., J. Electrochem. Soc., 2006, 153(12), A2298—A2303 |
[67] | Liu T. C., Pell W. G., Conway B. E., J. Electrochem. Soc., 1998, 145(6), 1882—1888 |
[68] | Zhao J. X., Liu B., Xu S., Yang J., Lu Y., J. Alloy. Compd., 2015, 651, 785—792 |
[69] | Xu Y. L., Wang J., Shen L. F., Dou H., Zhang X. G., Electrochim. Acta, 2015, 173, 680—686 |
[70] | Wang J. F., Wang J. R., Kong Z., Lv K. L., Teng C., Zhu Y., Adv. Mater., 2017, 29(45), 1703044 |
[71] | Meng Q. F., Cai K. F., Chen Y. X., Chen L. D., Nano Energy, 2017, 36, 268—285 |
[72] | Wang K., Wu H. P., Meng Y. N., Wei Z. X., Small, 2014, 10(1), 14—31 |
[73] | Ni W., Cheng J. L., Li X. D., Gu G. F., Huang L., Guan Q., Yuan D. M., Wang B., RSC Adv., 2015, 5(12), 9221—9227 |
[74] | Simotwo S. K., Delre C., Kalra V., ACS Appl. Mater. Interfaces, 2016, 8(33), 21261—21269 |
[75] | Lee K. M., Kim M., Lee E., Baeck S. H., Sang E. S., Electrochim. Acta, 2016, 213, 124—131 |
[76] | Miao F. J., Shao C. L., Li X. H., Lu N., Wang K. X., Zhang X., Liu Y. C., Electrochim. Acta, 2015, 176, 293—300 |
[77] | Miao Y. E., Fan W., Chen D., Liu T. X., ACS Appl. Mater. Interfaces, 2013, 5(10), 4423—4428 |
[78] | Laforgue A., J. Power Sources, 2011, 196(1), 559—564 |
[79] | Dong Q., Wang G., Hu H., Yang J., Qian B. Q., Ling Z., Qiu J. S., J. Power Sources, 2013, 243, 350—353 |
[80] | An G. H., Ahn H. J., Hong W. K., J. Power Sources, 2015, 274, 536—541 |
[81] | Abouali S., Garakani M. A., Zhang B., Xu Z. L., Heidari E. K., Huang J. Q., Huang J. Q., Kim J. K., ACS Appl. Mater. Interfaces, 2015, 7(24), 13503—13511 |
[82] | Zhou D., Lin H. M., Zhang F., Niu H., Cui L. R., Wang Q., Qu F. Y., Electrochim. Acta, 2015, 161, 427—435 |
[83] | Saito Y., Meguro M., Ashizawa M., Waki K., Yuksel R., Unalan H. E., Matsumoto H., RSC Adv., 2017, 7(20), 12351—12358 |
[84] | Samuel E., Joshi B., Jo H. S., Kim Y. I., An S., Swihart M. T., Yun J. M., Kim K. H., Yoon S. S., Chem. Eng. J., 2017, 328, 776—784 |
[85] | Ge J. L., Qu Y. S., Cao L. T., Wang F., Dou L. Y., Yu J. Y., Ding B., J. Mater. Chem. A, 2016, 4(20), 7795—7804 |
[86] | Lei D. Y., Li X. D., Seo M. K., Khil M. S., Kim H. Y., Kim B. S., Polymer, 2017, 132, 31—40 |
[87] | Wang F. F., Sun S. G., Xu Y. Q., Wang T., Yu R. J., Li H. J., Sci. Rep., 2017, 7, 4707 |
[88] | Lai F. L., Huang Y. P., Miao Y. E., Liu T. X., Electrochim. Acta, 2015, 174, 456—463 |
[89] | Liu Y., Zhou J. Y., Fu W. B., Zhang P., Pan X. J., Xie E. Q., , 2017, 114, 187—197 |
[90] | Xu J. L., Zhang L., Xu G. C., Sun Z. P., Zhang C., Ma X., Qi C. L., Zhang L., Jia D. Z., Appl. Surf. Sci., 2018, 434, 112—119 |
[91] | Kumuthini R., Ramachandran R., Therese H. A., Wang F., J. Alloy. Compd., 2017, 705, 624—630 |
[92] | Liu Y. K., Jiang G. H., Sun S. Q., Xu B., Zhou J. Y., Zhang Y., Yao J. M., J. Alloy. Compd., 2018, 731, 560—568 |
[93] | Wu Y. G., Ran F., J. Power Sources, 2017, 344, 1—10 |
[94] | Ren Y. Q., Dai J., Pang B., Liu X., Yu J., Electrochim. Acta, 2015, 176, 402—409 |
[95] | Miao F. J., Shao C. L., Li X. H., Lu N., Wang K. X., Zhang X., Liu Y. C., Energy, 2016, 95, 233—241 |
[96] | He S. J., Hu X. W., Chen S. L., Hu H., Hanif M., Hou H. Q., J. Mater. Chem., 2012, 22(11), 5114—5120 |
[97] | Yan X. B., Tai Z. X., Chen J. T., Xue Q. J., Nanoscale, 2011, 3(1), 212—216 |
[98] | Kim S. Y., Kim B. H., J. Power Sources, 2016, 328, 219—227 |
[99] | Jia J. F., Luo F. Y., Gao C. J., Suo C., Wang X. C., Song H. Z., Hu X., Ceram. Int., 2014, 40(5), 6973—6977 |
[100] | Zhu J., Xu Z., Lu B. A., Nano Energy, 2014, 7, 114—123 |
[101] | Nie G. D., Li S. K., Lu X. F., Wang C., Chem. J. Chinese Universities, 2013, 34(1), 15—29 |
(乜广弟,力尚昆,卢晓峰,王策.高等学校化学学报, 2013, 34(1), 15—29 | |
[102] | Li D., Xia Y. N., Adv. Mater., 2004, 16(14), 1151—1170 |
[103] | Greiner A., Wendroff J. H., Angew. Chem. Int. Ed., 2007, 46(30), 5670—5703 |
[104] | Nie G. D., Lu X. F., Lei J. Y., Jiang Z. Q., Wang C., J. Mater. Chem. A, 2014, 2(37), 15495—15501 |
[105] | Nie G. D., Lu X. F., Chi M. Q., Zhu Y., Yang Z. Z., Song N., Wang C., Electrochim. Acta, 2017, 231, 36—43 |
[106] | Radhamani A. V., Shareef K. M., Rao M. S. R., ACS Appl. Mater. Interfaces, 2016, 8(44), 30531—30542 |
[107] | Gong D. C., Zhu J., Lu B. A., RSC Adv., 2016, 6(54), 49173—49178 |
[108] | Jiang P. C., Wang Q., Dai J. F., Li W. X., Wei Z. Q., Mater. Lett., 2017, 188, 69—72 |
[109] | Harilal M., Vidyadharan B., Misnon I. I., Anilkumar G. M., Lowe A., Ismail J., Yusoff M. M., Jose R., ACS Appl. Mater. Interfaces, 2017, 9(12), 10730—10742 |
[110] | Vijayan B. L., Krishnan S. G., Zain N. K. M., Harilal M., Yar A., Misnon I. I., Dennis J. O., Yusoff M. M., Jose R., Chem. Eng. J., 2017, 327, 962—972 |
[111] | Niu H., Zhou D., Yang X., Li X., Wang Q., Qu F. Y., J. Mater. Chem. A, 2015, 3(36), 18413—18421 |
[112] | Xu K. B., Li S. J., Yang J. M., Xu H. Y., Hu J. Q., J. Alloy. Compd., 2016, 678, 120—125 |
[113] | Agyemang F. O., Kim H., Mater. Sci. Eng. B, 2016, 211, 141—148 |
[114] | Huang Y. P., Miao Y. E., Lu H. Y., Liu T. X., Chem. Eur. J., 2015, 21(28), 10100—10108 |
[115] | Lu X. Y., Shen C., Zhang Z. Y., Barrios E., Zhai L., ACS Appl. Mater. Interfaces, 2018, 10(4), 4041—4049 |
[116] | Tong L. Y., Liu J., Boyer S. M., Sonnenberg L. A., Fox M. T., Ji D. S., Feng J., Bernier W. E., Jones Jr. W. E., Electrochim. Acta, 2017, 224, 133—141 |
[117] | Zhou X. H., Shang C. Q., Gu L., Dong S. M., Chen X., Han P. X., Li L. F., Yao J. H., Liu Z. H., Xu H. X., Zhu Y. W., Cui G. L., ACS Appl. Mater. Interfaces, 2011, 3(8), 3058—3063 |
[118] | Zhou J. Y., Chen J. Y., Han S., Zhao H., Bai J. L., Yang Z. Y., Mu X. M., Liu Y., BianD. M., Sun G. Z., Zhang Z. X., Pan X. J., Xie E. Q., , 2017, 111, 502—512 |
[119] | Agyemang F. O., Tomboc G. M., Kwofie S., Kim H., Electrochim. Acta, 2018, 259, 1110—1119 |
[120] | Miao F. J., Shao C. L., Li X. H., Wang K. X., Lu N., Liu Y. C., ACS Sustainable Chem. Eng., 2016, 4(3), 1689—1696 |
[121] | Iqbal N., Wang X. F., Babar A. A., Zainab G., Yu J. Y., Ding B., Sci. Rep., 2017, 7, 15153 |
[122] | Zhang J., Su L. J., Ma L., Zhao D. Y., Qin C. L., Jin Z., Zhao K., J. Electroanal. Chem., 2017, 790, 40—49 |
[123] | Zhou G. Y., Xiong T. R., He S. J., Li Y. H., Zhu Y. M., Hou H. Q., J. Power Sources, 2016, 317, 57—64 |
[124] | Chen L., Zhu J. H., Chem. Commun., 2014, 50(60), 8253—8256 |
[125] | Lai F. L., Miao Y. E, Huang Y. P., Chung T. S., Liu T. X., J. Phys. Chem. C, 2015, 119(24), 13442—13450 |
[126] | Iqbal N., Wang X. F., Babar A. A., Yu J. Y., Ding B., J. Colloid Interf. Sci., 2016, 476, 87—93 |
[127] | Lee D. G., Kim Y. A., Kim B. H., , 2016, 107, 783—791 |
[128] | Chen L., Chen L. N., Ai Q., Li D. P., Si P. C., Feng J. K., Zhang L., Li Y. H., Lou J., Ci L. J., Chem. Eng. J., 2018, 334, 184—190 |
[129] | Shi M. J., Zhao L. P., Song X. F., Liu J., Zhang P., Gao L., ACS Appl. Mater. Interfaces, 2016, 8(47), 32460—32467 |
[130] | Huang J., Wei J. C., Xu Y. Z., Xiao Y. B., Chen Y. W., J. Mater. Chem. A, 2017, 5(44), 23349—23360 |
[131] | Liu Y. K., Jiang G. H., Sun S. Q., Xu B., Zhou J. Y., Zhang Y., Yao J. M., J. Electroanal. Chem., 2017, 804, 212—219 |
[132] | Nie G. D., Lu X. F., Chi M. Q., Gao M., Wang C., J. Colloid Interf. Sci., 2018, 509, 235—244 |
[1] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[2] | HOU Congcong, WANG Huiying, LI Tingting, ZHANG Zhiming, CHANG Chunrui, AN Libao. Preparation and Electrochemical Properties of N-CNTs/NiCo-LDH Composite [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220351. |
[3] | LIANG Yu, LIU Huan, GONG Lige, WANG Chunxiao, WANG Chunmei, YU Kai, ZHOU Baibin. Synthesis and Supercapacitor Properties of Biimidazole-modified {SiW12O40} Hybrid [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210556. |
[4] | WEI Yuchen, WU Tingting, YANG Lei, JIN Biyu, LI Hongqiang, HE Xiaojun. Preparation and Supercapacitive Performance of Naphthalene-based Interconnected Porous Carbon Nanocapsules [J]. Chem. J. Chinese Universities, 2021, 42(9): 2852. |
[5] | XIE Fan, CHEN Shanshan, ZHUO Longhai, LU Zhaoqing, GAO Kun, DAI Qiyang. Fabrication of Poly(p-xylene) Nanofiber Arrays by CVD Liquid Crystal Template Method and Their Degradability [J]. Chem. J. Chinese Universities, 2021, 42(8): 2643. |
[6] | ZOU Junyan, ZHANG Yanyan, CHEN Shi, SHAO Huaiyu, TANG Yuxin. Recent Development on Surface-interface Chemistry of All-solid-state Lithium Batteries [J]. Chem. J. Chinese Universities, 2021, 42(4): 1005. |
[7] | HUANG Dongxue, ZHANG Ying, ZENG Ting, ZHANG Yuanyuan, WAN Qijin, YANG Nianjun. Transition Metal Sulfides Hybridized with Reduced Graphene Oxide for High-Performance Supercapacitors [J]. Chem. J. Chinese Universities, 2021, 42(2): 643. |
[8] | SHA Huiwen, MA Weiting, ZHOU Xiaojuan, SONG Weixing. One-step Preparation and Applications of Laser Induced Three-dimensional Reticular Graphene [J]. Chem. J. Chinese Universities, 2021, 42(2): 607. |
[9] | CHEN Minghua, LI Hongwu, FAN He, LI Yu, LIU Weiduo, XIA Xinhui, CHEN Qingguo. Research Progress of Two-dimensional Transition Metal Dichalcogenides in Supercapacitors [J]. Chem. J. Chinese Universities, 2021, 42(2): 539. |
[10] | LI Min, ZHAO Chun, FENG Qinzhong, FENG Jian, MENG Xiaojing. Experimental and DFT Studies on the Adsorption of Cd(II) Ions from Aqueous Solutions by Nanofiber Modified Thiourea Groups [J]. Chem. J. Chinese Universities, 2021, 42(12): 3680. |
[11] | ZHANG Weiguo, FAN Songhua, WANG Hongzhi, YAO Suwei. Synthesis of Self-assembled α-Fe2O3/Graphene Hydrogel for Supercapacitors with Promising Electrochemical Properties [J]. Chem. J. Chinese Universities, 2020, 41(8): 1850. |
[12] | JI Tianyi, LIU Xiaoxu, ZHAO Jiupeng, LI Yao. Synthesis and Lithium-storage Characteristics of Three-dimensional Cross-linked Graphene Nanofibers † [J]. Chem. J. Chinese Universities, 2020, 41(4): 821. |
[13] | WANG Xia, LIU Yanji, JIA Yongfeng, JI Lei, HU Quanli, DUAN Limei, LIU Jinghai. Preparative Chemistry of N-containing Porous Carbon Nanofibers for Capacity Improvement in Lithium-sulfur Battery † [J]. Chem. J. Chinese Universities, 2020, 41(4): 829. |
[14] | QIN Chunping, WANG Xianliu, TANG Han, YI Bingcheng, LIU Chang, ZHANG Yanzhong. Osteogenesis-promoting Effects of the Electrospun Nanofibers Containing Decellularized Bone Matrix † [J]. Chem. J. Chinese Universities, 2020, 41(4): 780. |
[15] | KONG Jinfeng, ZHU Yuzhang, JIN Jian. Sulfonated Cellulose Nanofibers Film Supported Nanofiltration Membrane for High-flux and High-rejection Desalination † [J]. Chem. J. Chinese Universities, 2020, 41(4): 690. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||