Chem. J. Chinese Universities ›› 2017, Vol. 38 ›› Issue (9): 1556.doi: 10.7503/cjcu20170115
• Analytical Chemistry • Previous Articles Next Articles
ZHAN Yan1, ZU Hongru1, HUANG Di1, LIU Yingliang2,*(), HU Chaofan1,2,*(
)
Received:
2017-02-25
Online:
2017-09-10
Published:
2017-07-12
Contact:
LIU Yingliang,HU Chaofan
E-mail:tliuyl@scau.edu.cn;hcf0000@126.com
Supported by:
CLC Number:
TrendMD:
ZHAN Yan, ZU Hongru, HUANG Di, LIU Yingliang, HU Chaofan. Synthesis of Fluorescent Graphitic Carbon Nitride Quantum Dots by Solvothermal Ions Intercalation Method for Fe(Ⅲ) Detection†[J]. Chem. J. Chinese Universities, 2017, 38(9): 1556.
Fig.1 SEM image of bulk g-C3N4(A), AFM image(B), TEM image(C) and size distribution(D) of g-C3N4 QDsInset of (B) is the height profile along the white line; insert of (C) is HRTEM image of g-C3N4 QDs.
Fig.3 UV-Vis absorption of g-C3N4 QDs(A), PL emission of g-C3N4 QDs with excitation wavelengths from 300 nm to 360 nm(B), PL excitation and emission spectra of g-C3N4 QDs(C) and photostability of g-C3N4 QDs under 310 nm excitation(D)Inserts of (A) are photographs of g-C3N4 QDs under 365 nm(left) and visible light(right).
Fig.5 Fluorescence spectra of g-C3N4 QDs with the concentrations of Fe3+ from 0 to 100 μmol/L(A), relative intensity(F0-F)/F0 against Fe3+ concentration ranging from 0—100 μmol/L(B), fluorescence intensity of F/F0 in the presence of various metal ions at the concentration of 400 μmol/L(λex=310 nm)(C) and fluorescence intensity of F/F0 with 400 μmol/L different metal ions before(black bars) and after(red bars) mixing with 400 μmol/L Fe3+(D)(A) Concentration from top to bottom/(μmol·L-1): 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100; λex=310 nm; (C) a. blank; b. Al3+; c. Ca2+; d Cu2+; e. Fe2+; f. Hg2+; g. K+; h. Fe3+; i. Li+; j. Mg2+; k. Mn2+; l. Na+; m. Ni+; n. Zn2+. (D) a. Blank; b. Al3+; c. Ca2+; d. Cu2+; e. Fe2+; f. Hg2+; g. K+; h. Li+; i. Mg2+; j. Mn2+; k. Na+; l. Ni+; m. Zn2+.
Detection probe | Ion detected | Linear range/(μmol·L-1) | Detection limit/(μmol·L-1) | Ref. |
---|---|---|---|---|
SN-CQDs | Fe3+ | 0—1000 | 0.10 | [20] |
GQDs | Fe3+ | 0—80 | 7.22 | [30] |
GO-nanosheets | Fe3+ | 14.3—143.2 | 17.50 | [31] |
NCQDs | Fe3+ | 0—50 | 4.67 | [32] |
g-C3N4 QDs | Fe3+ | 5—100 | 0.50 | This work |
Table 1 Comparison of the detection of Fe3+ with other fluorescent nano-probes
Detection probe | Ion detected | Linear range/(μmol·L-1) | Detection limit/(μmol·L-1) | Ref. |
---|---|---|---|---|
SN-CQDs | Fe3+ | 0—1000 | 0.10 | [20] |
GQDs | Fe3+ | 0—80 | 7.22 | [30] |
GO-nanosheets | Fe3+ | 14.3—143.2 | 17.50 | [31] |
NCQDs | Fe3+ | 0—50 | 4.67 | [32] |
g-C3N4 QDs | Fe3+ | 5—100 | 0.50 | This work |
Sample | c(Fe3+added)/(μmol·L-1) | c(Fe3+ found)/(μmol·L-1) | Recovery(%) | RSD(%) |
---|---|---|---|---|
1 | 20.00 | 18.21 | 91.05 | 0.46 |
2 | 40.00 | 37.62 | 94.05 | 0.67 |
3 | 80.00 | 76.85 | 96.06 | 0.54 |
Table 2 Detection of Fe3+ in real lake samples(n=5)
Sample | c(Fe3+added)/(μmol·L-1) | c(Fe3+ found)/(μmol·L-1) | Recovery(%) | RSD(%) |
---|---|---|---|---|
1 | 20.00 | 18.21 | 91.05 | 0.46 |
2 | 40.00 | 37.62 | 94.05 | 0.67 |
3 | 80.00 | 76.85 | 96.06 | 0.54 |
[1] | Oh J., Yoo S. Y., Lee Y. J., Kim D. W., Park S., Chem.-Eur. J., 2015, 21, 6241—6246 |
[2] | Chimene D., Alge D. L., Gaharwar A. K., Adv. Mater., 2015, 27, 7261—7684 |
[3] | Heinz T. F., Hong S. S., Huang J., Ismach A. F., ACS Nano, 2013, 7, 2898—2926 |
[4] | Zhang X. D., Xie X., Wang H., Zhang J. J., Pan B. C., Xie Y., J. Am. Chem. Soc., 2013, 135, 18—21 |
[5] | Zhang Y.H., Pan Q. W., Chai G. Q., Liang M. R., Dong G. P., Zhang Q. Y., Qiu J. R., Sci. Rep., 2013,3, 1943 |
[6] | Liu Q. Q., Hu C. F., Wang X. M., RSC Adv., 2016, 6, 25605—25610 |
[7] | Hu C. F., Liu Y. L., Cui J. H., Huang Z. R., Wang Y. L., Yang L. F., Wang H. B., Xiao Y., Rong J. H., J. Mater. Chem. B, 2013, 1, 39—42 |
[8] | Hu C. F., Liu Y. L., Qin J. L., Nie G. T., Lei B. F., Xiao Y., Zheng M. T., Rong J. H., ACS Appl. Mater. Interfaces, 2013, 5, 4760—4768 |
[9] | Rong M. C., Song X. H., Zhao T. T., Wang Y. R., Chen X., J. Mater. Chem. C, 2015, 3, 10916—10924 |
[10] | Zhang S. W., Li J. X., Zeng M. Y., Xu J. Z., Wang X. K., Hu W. P., Nanoscale,2014, 6, 4157—4162 |
[11] | Zhou Z. X., Shen Y. F., Li Y., Liu A. R., Liu S. Q., Zhang Y. J., ACS Nano, 2015, 9, 12480—12487 |
[12] | Wang W. J., Yu J. C., Shen Z. R., Chan D. K. L., Gu T., Chem. Commun., 2014, 50, 10148—10150 |
[13] | Lin Z. Z., Wang X. C., Angew. Chem. Int. Ed., 2013, 52, 1735—1738 |
[14] | Bu Y. Y., Chen Z. W., Xie T., Li W. B., Ao J. P., RSC Adv., 2016, 6, 47813—47819 |
[15] | Bai X. J., Yan S. C., Wang J. J., Wang L., Jiang W. J., Wu S. L., Sun C. P., Zhu Y. F., J. Mater. Chem. A, 2014, 2, 17521—17529 |
[16] | Cao X. T., Ma J., Lin Y. P., Yao B. X., Li F. M., Weng W., Lin X. C., Spectrochim Acta A, 2015, 151, 875—880 |
[17] | Zhuang Q. F., Cao W., Wu Q., Ni Y. N., Chem. J. Chinese Universities, 2016, 37(9), 1611—1615 |
(庄欠粉, 曹伟, 吴琦, 倪永年.高等学校化学学报,2016, 37(9), 1611—1615) | |
[18] | He J. L., Zhang H. R., Zou J. L., Liu Y. L., Zhuang J. L., Xiao Y., Lei B. F., Biosens. Bioelectron., 2015, 79, 531—535 |
[19] | Yu F., Qin L. Y., Shang Z. B., Dong Z. M., Wang Y., Jin W. J., Chem. Res. Chinese Universities, 2015, 31(6), 919—924 |
[20] | Zhang W. Y., Chang Q., Zhou Y. F., Wei Z. J., Li K. K., Hu S. L., Chinese J. Lumin., 2016, 37(4), 410—415 |
(张文宇, 常青, 周雨锋, 魏志佳, 李凯凯, 胡胜亮.发光学报,2016, 37(4), 410—415) | |
[21] | Barman S., Sufhakhan M., J. Mater. Chem., 2012, 22, 21832—21837 |
[22] | Yang P. J., Zhao J. H., Wang J., Cao B. Y., Li L., Zhu Z. P., J. Mater. Chem. A, 2015, 3, 136—138 |
[23] | Wang Y. P., Li Y. K., Ju W., Wang J. C., Yao H. C., Zhang L., Wang J. S., Li Z. J., Carbon,2016, 102, 477—486 |
[24] | Xu J., Zhang L. W., Shi R., Zhu Y. F., J. Mater. Chem. A, 2013, 1, 14766—14772 |
[25] | Liu N. Y., Liu J., Kong W. Q., Li H., Huang H., Liu Y., Kang Z. H., J. Mater. Chem. B, 2014, 2, 5768—5744 |
[26] | Huang H., Jiang S. L., Chen S. C., Li D. D., Zhang X. D., Shao W., Sun X. S., Xie J. F., Zhao Z., Zhang Q., Tian Y. P., Xie Y., Adv. Mater., 2016, 28, 6940—6945 |
[27] | Shen J.H., Li Y. F., Su Y. H., Zhu Y. H., Jiang H. L., Yang X. L., Li C. Z., Nanoscale, 2015, 7,2003—2008 |
[28] | Brandrup J., Immergut E.H., Grulke E. A., Bloch D., Polymer Handbook, 4th Edition, Wiley-interscience, New York, 1999 |
[29] | Lin Y. W., Wang P., Univer. Chem., 2007, 22(1), 41—44 |
(林英武, 王平.大学化学,2007, 22(1), 41—44) | |
[30] | Ananthanarayanan A., Wang X. W., Routh P., Sana B., Lim S., Kim D. H., Lim K. H., Li J., Chen P., Adv. Funct. Mater., 2014, 24, 3021—3026 |
[31] | Wang D., Wang L., Dong X., Shi Z., Jin J., Carbon, 2012, 50, 2147—2154 |
[32] | Yu J., Xu C.X., Tian Z. S., Lin Y., Shi Z. L., New. J. Chem., 2016, 40,20283—2088 |
[1] | WANG Fangyuan, ZHANG Fenxian, LI Yi, GAO Jianhua, NIU Yanbing, SHEN Shaofei. Fabrication of Bionic Leaf Model and Its Application in Agarose Microfluidic Chip [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220445. |
[2] | ZHANG Liling, LIU Liu, ZHENG Mingqiu, FANG Wenkai, LIU Da, TANG Hongwu. Dual Signal Detection of HPV16 DNA by CRISPR/Cas12a Biosensing System Based on Upconversion Luminescent Resonance Energy Transfer [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220412. |
[3] | QIN Gaizhao, TANG Minghua, LAI Yalin, YUAN Liming. Chiral Metal-organic Cage MOC-PA as a Chiral Stationary Phase for Capillary Electrophoresis [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220417. |
[4] | XU Ruotao, WANG Qiang, WANG Weiyu, BAO Qingjia, ZHANG Zhi, LIU Zhaoyang, XU Jun, DENG Feng. In situ NMR Imaging of Solvent Infiltration on γ-Al2O3 particles [J]. Chem. J. Chinese Universities, 0, (): 20220587. |
[5] | ZHAO Xueqi, ZHAO Yue, XUE Jing, BAI Min, CHEN Feng, SUN Ying, SONG Daqian, ZHAO Yongxi. Nucleic Acids-Encoded Amplification for Single-cell Imaging [J]. Chem. J. Chinese Universities, 0, (): 20220572. |
[6] | ZHAO Hengzhi, YU Fangzhi, LI Xiangfei, LI Lele. Advances in Biosensing and imaging Based on the Integration of DNA and UCNPs [J]. Chem. J. Chinese Universities, 0, (): 20220626. |
[7] | WANG Shiqi, LUO Bowen, YU Jicheng, GU Zhen. Near-Infrared-Ⅱ Fluorescence Imaging for Tumor Diagnosis and Therapy [J]. Chem. J. Chinese Universities, 0, (): 20220577. |
[8] | SONG Lu, ZHANG Shuyang, WANG Lihua, ZUO Xiaolei, LI Min. High-throughput Biological Microarrays Based on Framework Nucleic Acids [J]. Chem. J. Chinese Universities, 0, (): 20220563. |
[9] | WANG Wei, ZOU Bingchen, HOU Jie, ZHOU Wanli, LUO Jianping, WANG Kangli, JIANG Kai. In⁃situ Analysis of Interfacial Reaction Process Inside Li-Ga Liquid Metal Battery [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220261. |
[10] | CHEN Jialu, HUANG Shuo. Application of Nanopore Sequencing Technology in the Detection of Nucleic Acid Modifications [J]. Chem. J. Chinese Universities, 2022, 43(Album-4): 20220333. |
[11] | WANG Di, ZHONG Keli, TANG Lijun, HOU Shuhua, LYU Chunxin. Synthesis of Schiff-based Covalent Organic Framework and Its Recognition of I ‒ [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220115. |
[12] | LIU Miao, LIU Ruibo, LIU Badi, QIAN Ying. Synthesis, Two-photon Fluorescence Imaging and Photodynamic Therapy of Lysosome-targeted Indole-BODIPY Photosensitizer [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220326. |
[13] | LI Ao, LI Lingxuan, ZUO Cuicui, CHEN Chuankai, FAN Yifan, BU Yifan, LIN Hongyu, GAO Jinhao. A Boronate-Based 19F NMR/MRI Molecular Probe for Activatable Deep-Tissue Imaging of Reactive Oxygen Species [J]. Chem. J. Chinese Universities, 0, (): 20220545. |
[14] | YANG Yanling, YE Deju. Recent Advance in the Development of Molecular Probes for Targeting Carbonic Anhydrases [J]. Chem. J. Chinese Universities, 0, (): 20220557. |
[15] | QIN Wenjie, HUANG Yizhuo, LUO Xiao, QIAN Xuhong, YANG Youjun. Probe Design Strategies for Cy7-type Cyanine Dyes [J]. Chem. J. Chinese Universities, 0, (): 20220567. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||