Chem. J. Chinese Universities ›› 2016, Vol. 37 ›› Issue (4): 745.doi: 10.7503/cjcu20150653
• Physical Chemistry • Previous Articles Next Articles
WU Binquan, WANG Sheng, HUANG Liang, QIN Feng, HUANG Zhen, XU Hualong, SHEN Wei*()
Received:
2015-08-17
Online:
2016-04-10
Published:
2016-03-09
Contact:
SHEN Wei
E-mail:wshen@fudan.edu.cn
CLC Number:
TrendMD:
WU Binquan, WANG Sheng, HUANG Liang, QIN Feng, HUANG Zhen, XU Hualong, SHEN Wei. Preparation of Ce Modified Mg-Al Mixed Metal Oxides by Aqueous Reconstruction for Vapor Self-condensation of Acetone†[J]. Chem. J. Chinese Universities, 2016, 37(4): 745.
Fig.1 XRD patterns of hydrotalcite-like samples(A) and mixed oxides series samples(B) (A) a. HT; b. HT-rh; c. HT-Ce-0.8; d. HT-Ce-1.6; e. HT-Ce-3.2; f. HT-Ce-6.3. (B) a. HTc; b. HTc-rh; c. HTc-Ce-0.8; d. HTc-Ce-1.6; e. HTc-Ce-3.2; f. HTc-Ce-6.3.
Sample | Cell parameter | Particle size/nm | Sample | Cell parameter | Particle size/nm | ||
---|---|---|---|---|---|---|---|
a/nm | c/nm | a/nm | c/nm | ||||
HT | 0.304 | 22.71 | 50 | HT-Ce-1.6 | 0.304 | 22.84 | 11 |
HT-rh | 0.304 | 22.72 | 15 | HT-Ce-3.2 | 0.304 | 23.31 | 11 |
HT-Ce-0.8 | 0.304 | 22.81 | 12 | HT-Ce-6.3 | 0.304 | 26.26 | 18 |
Table 1 Structure parameters of HT series samples
Sample | Cell parameter | Particle size/nm | Sample | Cell parameter | Particle size/nm | ||
---|---|---|---|---|---|---|---|
a/nm | c/nm | a/nm | c/nm | ||||
HT | 0.304 | 22.71 | 50 | HT-Ce-1.6 | 0.304 | 22.84 | 11 |
HT-rh | 0.304 | 22.72 | 15 | HT-Ce-3.2 | 0.304 | 23.31 | 11 |
HT-Ce-0.8 | 0.304 | 22.81 | 12 | HT-Ce-6.3 | 0.304 | 26.26 | 18 |
Sample | Atomic mass fractiona(%) | Bulk atomic ratioa | Surface atomic ratiob | ||||
---|---|---|---|---|---|---|---|
Mg | Ce | Al | Mg/Al | Mg/Ce | Mg/Al | Mg/Ce | |
HTc | 7.90 | 13.37 | 1.90 | 1.23 | |||
HTc-rh | 8.76 | 14.33 | 1.84 | 1.00 | |||
HTc-Ce-0.8 | 7.69 | 1.18 | 12.88 | 1.88 | 63.67 | 1.09 | 34.82 |
HTc-Ce-1.6 | 7.96 | 2.20 | 13.14 | 1.86 | 34.84 | 1.34 | 18.61 |
HTc-Ce-3.2 | 7.67 | 4.15 | 13.18 | 1.93 | 18.53 | 1.36 | 5.27 |
HTc-Ce-6.3 | 6.43 | 6.41 | 11.21 | 1.96 | 10.20 | 1.49 | 3.49 |
Table 2 Bulk and surface atomic constitution of HTc series samples
Sample | Atomic mass fractiona(%) | Bulk atomic ratioa | Surface atomic ratiob | ||||
---|---|---|---|---|---|---|---|
Mg | Ce | Al | Mg/Al | Mg/Ce | Mg/Al | Mg/Ce | |
HTc | 7.90 | 13.37 | 1.90 | 1.23 | |||
HTc-rh | 8.76 | 14.33 | 1.84 | 1.00 | |||
HTc-Ce-0.8 | 7.69 | 1.18 | 12.88 | 1.88 | 63.67 | 1.09 | 34.82 |
HTc-Ce-1.6 | 7.96 | 2.20 | 13.14 | 1.86 | 34.84 | 1.34 | 18.61 |
HTc-Ce-3.2 | 7.67 | 4.15 | 13.18 | 1.93 | 18.53 | 1.36 | 5.27 |
HTc-Ce-6.3 | 6.43 | 6.41 | 11.21 | 1.96 | 10.20 | 1.49 | 3.49 |
Sample | Temperature/℃ | Weak basicity/ (mmol·g-1) | Strong basicity/ (mmol·g-1) | Surface area/ (m2·g-1) | Pore volume/ (cm3·g-1) | WBPCa/ (mmol·g-1) | SBPCb/ (mmol·g-1) | |
---|---|---|---|---|---|---|---|---|
First peak | Second peak | |||||||
HTc | 109 | 234 | 0.082 | 0.096 | 127 | 0.19 | 0.082 | 0.096 |
HTc-rh | 105 | 257 | 0.093 | 0.103 | 188 | 0.41 | 0.093 | 0.103 |
HTc-Ce-0.8 | 99 | 244 | 0.105 | 0.116 | 220 | 0.57 | 0.108 | 0.120 |
HTc-Ce-1.6 | 102 | 250 | 0.103 | 0.125 | 178 | 0.48 | 0.110 | 0.133 |
HTc-Ce-3.2 | 105 | 253 | 0.105 | 0.144 | 137 | 0.47 | 0.119 | 0.163 |
HTc-Ce-6.3 | 101 | 271 | 0.104 | 0.134 | 146 | 0.42 | 0.131 | 0.169 |
Table 3 Surface basicity and structure of HTc series catalysts
Sample | Temperature/℃ | Weak basicity/ (mmol·g-1) | Strong basicity/ (mmol·g-1) | Surface area/ (m2·g-1) | Pore volume/ (cm3·g-1) | WBPCa/ (mmol·g-1) | SBPCb/ (mmol·g-1) | |
---|---|---|---|---|---|---|---|---|
First peak | Second peak | |||||||
HTc | 109 | 234 | 0.082 | 0.096 | 127 | 0.19 | 0.082 | 0.096 |
HTc-rh | 105 | 257 | 0.093 | 0.103 | 188 | 0.41 | 0.093 | 0.103 |
HTc-Ce-0.8 | 99 | 244 | 0.105 | 0.116 | 220 | 0.57 | 0.108 | 0.120 |
HTc-Ce-1.6 | 102 | 250 | 0.103 | 0.125 | 178 | 0.48 | 0.110 | 0.133 |
HTc-Ce-3.2 | 105 | 253 | 0.105 | 0.144 | 137 | 0.47 | 0.119 | 0.163 |
HTc-Ce-6.3 | 101 | 271 | 0.104 | 0.134 | 146 | 0.42 | 0.131 | 0.169 |
Catalyst | Conversion(%) | Selectivity(%) | ||||
---|---|---|---|---|---|---|
α-Isophorone | β-Isophorone | IMO/MO | Mesitylene | Pentamers | ||
HTc | 22.7 | 66.2 | 3.0 | 13.4 | 0.8 | 16.7 |
HTc-rh | 33.1 | 61.1 | 2.9 | 5.2 | 0.4 | 30.4 |
HTc-Ce-0.8 | 34.0 | 61.0 | 2.9 | 7.2 | 0.4 | 28.5 |
HTc-Ce-1.6 | 45.9 | 48.6 | 2.2 | 3.1 | 0.3 | 45.8 |
HTc-Ce-3.2 | 56.8 | 35.6 | 2.2 | 1.4 | 0.3 | 60.8 |
HTc-Ce-6.3 | 33.0 | 60.1 | 2.5 | 6.5 | 0.4 | 30.5 |
Table 4 Activities of HTc series catalysts and selectivity of reaction products
Catalyst | Conversion(%) | Selectivity(%) | ||||
---|---|---|---|---|---|---|
α-Isophorone | β-Isophorone | IMO/MO | Mesitylene | Pentamers | ||
HTc | 22.7 | 66.2 | 3.0 | 13.4 | 0.8 | 16.7 |
HTc-rh | 33.1 | 61.1 | 2.9 | 5.2 | 0.4 | 30.4 |
HTc-Ce-0.8 | 34.0 | 61.0 | 2.9 | 7.2 | 0.4 | 28.5 |
HTc-Ce-1.6 | 45.9 | 48.6 | 2.2 | 3.1 | 0.3 | 45.8 |
HTc-Ce-3.2 | 56.8 | 35.6 | 2.2 | 1.4 | 0.3 | 60.8 |
HTc-Ce-6.3 | 33.0 | 60.1 | 2.5 | 6.5 | 0.4 | 30.5 |
[1] | Abelló S., Medina F., Tichit D., Pérez-Ramírez J., Groen J. C., Sueiras J. E., Salagre P., Cesteros Y., Chem. Eur. J., 2005, 11, 728—739 |
[2] | Cosimo J. I., Díez V. K., Apesteguía C. R., Appl. Catal. A: Gen., 1996, 137, 149—166 |
[3] | Abelló S., Medina F., Tichit D., Pérez-Ramírez J., Rodrguez X., Sueiras J. E., Salagre P., Cesteros Y., Appl. Catal., 2005, 281, 191—198 |
[4] | Wang S., Wu X. W., Li H. P., Zhang R. J., Hou W. G., Chem. J. Chinese Universities, 2014, 35(9), 1982—1987 |
(王爽, 兀晓文, 李海平, 张人杰, 侯万国. 高等学校化学学报,2014, 35(9), 1982—1987) | |
[5] | Roelofs J. C. A. A., Lensveld D. J., van Dillen A. J., de Jong K. P., J. Catal., 2001, 203, 184—191 |
[6] | Nakayama H., Wada N., Tsuhako M., International Journal of Pharmaceutics, 2004, 269, 469—478 |
[7] | Rives V., Ulibarri M. A., Coord. Chem. Rev., 1999, 181, 61—120 |
[8] | Winter F., Xia X. Y., Hereijgers B. P. C., Bitter J. H., van Dillen A. J., Muhler M., de Jong K., J. Phys. Chem. B, 2006, 110, 9211—9218 |
[9] | Cui Y. Y., Chen X. R., Journal of Hebei University of Technology, 2011, 40(3), 20—23 |
(崔圆圆, 陈霄榕. 河北工业大学学报, 2011, 40(3), 20—23) | |
[10] | Liu Y. X., Sun K. P., Ma H. W., Xu X. L., Wang X. L., Catalysis Communications, 2010, 11, 880—883 |
[11] | Sun J., Yang J. Y., Li S. P., Xu X. R., Catalysis Communications, 2014, 52, 1—4 |
[12] | Wang Z., Fongarland P., Lu G. Z., Essayem N., J. Catal., 2014, 318, 108—118 |
[13] | Martin D., Duprez D., J. Phys. Chem., 1996, 100, 9429—9438 |
[14] | Drouilly C., Krafft J. M., Averseng F., Lauron-Pernot H., Bazer-Bachi D., Chizallet C., Lecocq V., Costentin G., Appl. Catal. A: Gen., 2013, 453, 121—129 |
[15] | Pérez-Ramírez J., Abelló S., van der Pers N. M., J. Phys. Chem. C, 2007, 111, 3642—3650 |
[16] | Bîrjega R., Pavel O. D., Costentin G., Che M., Angelescu E., Appl. Catal. A: Gen., 2005, 288, 185—193 |
[17] | Rodrigues E., Pereira P., Martins T., Vargas F., Scheller T., Correa J., Del Nero J., Moreira S. G. C., Ertel-Ingrisch W., De Campos C. P., Gigler A., Materials Letters, 2012, 78, 195—198 |
[18] | Ma C. X., Liu G., Wang Z. L., Li Y. F., Zheng J., Zhang W. X., Jia M. J., React. Kinet. Catal. Lett., 2009, 98(1), 149—156 |
[19] | Díez V. K., Apesteguía C. R., Di Cosimo J. I., Journal of Catalysis, 2003, 215, 220—233 |
[20] | Meis N. N. A. H., Bitter J. H., de Jong K. P., Ind. Eng. Chem. Res., 2010, 49(3), 1229—1235 |
[21] | Alvarez M. G., Pliskova M., Segarra A. M., Medina F., Figueras F., Appl. Catal. B, 2012, 113, 212—220 |
[22] | Urdå A., Popescu I., Cacciaguerra T., Tanchoux N., Tichit D., Marcu I. C., Appl. Catal. A: Gen., 2013, 464, 20—27 |
[23] | Di Cosimo J. I., Díez V. K., Xu M., Iglesia E., Apesteguía C. R., Journal of Catalysis, 1998, 178, 499—510 |
[24] | Kus'trowski P., Sulkowska D., Pytlowany R., Dziembaj R., React. Kinet. Catal. Lett., 2004, 81(1), 3—11 |
[25] | Bej S. K., Thompson L. T., Appl. Catal. A: Gen., 2004, 264, 141—150 |
[26] | Zamora M., López T., Gómez R., Asomora M., Meléndrez R., Applied Surface Science, 2005, 252, 828—832 |
[1] | ZHAO Sheng, HUO Zhipeng, ZHONG Guoqiang, ZHANG Hong, HU Liqun. Preparation of Modified Gadolinium/Boron/Polyethylene Nanocomposite and Its Radiation Shielding Performance for Neutron and Gamma-ray [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220039. |
[2] | JIANG Shan, SHEN Qianqian, LI Qi, JIA Husheng, XUE Jinbo. Pd-loaded Defective TiO2 Nanotube Arrays for Enhanced Photocatalytic Hydrogen Production Performance [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220206. |
[3] | WU Qiliang, MEI Jinghao, LI Zheng, FAN Haidong, ZHANG Yanwei. Photo-thermal Coupling Water Splitting over Fe-doped TiO2 with Various Nanostructures [J]. Chem. J. Chinese Universities, 2021, 42(6): 1837. |
[4] | SHI Ying, HU Guangjian, WU Minjie, LI Feng. Applications of Low Temperature Plasma for the Materials in Li-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(5): 1315. |
[5] | ZOU Junyan, ZHANG Yanyan, CHEN Shi, SHAO Huaiyu, TANG Yuxin. Recent Development on Surface-interface Chemistry of All-solid-state Lithium Batteries [J]. Chem. J. Chinese Universities, 2021, 42(4): 1005. |
[6] | JI Shaobo, CHEN Xiaodong. Surface and Interface Chemistry in Flexible Electronics [J]. Chem. J. Chinese Universities, 2021, 42(4): 1074. |
[7] | BA Zhichen, LIANG Daxin, XIE Yanjun. Progress of MXenes Composites: Interface Modification and Structure Design [J]. Chem. J. Chinese Universities, 2021, 42(4): 1225. |
[8] | ZHANG Guoqiang, SUN Yuchen, SHI Yabo, ZHENG Huayan, LI Zhong, SHANGGUAN Ju, LIU Shoujun, SHI Pengzheng. Surface Properties of Ce1-xMnxO2 Catalyst on the Catalytic Activities for Direct Synthesis of DMC from CO2 and Methanol [J]. Chem. J. Chinese Universities, 2020, 41(9): 2061. |
[9] | YAN Fanyong, SUN Zhonghui, PANG Jiping, JIANG Yingxia, CHEN Yuan. Functionalized Carbon Dots of Benzothiazine Derivatives for Detection of Quercetin in Ginkgo Biloba Tea [J]. Chem. J. Chinese Universities, 2020, 41(8): 1768. |
[10] | PENG Xinyan, LIU Yunhong, LI Jiawen, FENG Yilong, WANG Hanchun. Preparation and Characterization of Tannin/Zwitterionic Modified Oil-water Separation Membrane [J]. Chem. J. Chinese Universities, 2020, 41(6): 1337. |
[11] | CHEN Liangdan,ZOU Wei,WU Liang,XIA Fanjie,HU Zhiyi,LI Yu,SU Baolian. Nano-Al2O3 Coated Li-rich Cathode Material Li1. 2Ni0.13Co0.13Mn0.54O2 for Highly Improved Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2020, 41(6): 1329. |
[12] | LIU Shuaizhuo,ZHANG Qian,LIU Ning,XIAO Wenyan,FAN Leiyi,ZHOU Ying. One-step Synergistic Hydrophobic Modification of Melamine Sponge and Its Application [J]. Chem. J. Chinese Universities, 2020, 41(3): 521. |
[13] | ZHANG Xinyu, WANG Hong, FANG Yun, FAN Ye. Stimuli-responsive Fe3O4 Nanoparticle Modified by Conjugated Linoleic Acid [J]. Chem. J. Chinese Universities, 2020, 41(11): 2519. |
[14] | MAO Long, LIU Yuejun, FAN Shuhong. Preparation and Properties of Polypyrrole Modified Layered Clay/poly(ε-caprolactone) Antibacterial Nanocomposites [J]. Chem. J. Chinese Universities, 2019, 40(8): 1726. |
[15] | REN Wei, TIAN Ye, XING Lingli, YANG Yuexi, DING Tong, LI Xingang. K Promoted Nanosheets-like Hydrotalcite-derived CoAlO Metal Oxides for Catalytic Soot Combustion [J]. Chem. J. Chinese Universities, 2019, 40(8): 1670. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||