Chem. J. Chinese Universities ›› 2015, Vol. 36 ›› Issue (9): 1846.doi: 10.7503/cjcu20150145
• Polymer Chemistry • Previous Articles Next Articles
Received:
2015-02-11
Online:
2015-09-10
Published:
2015-08-21
Contact:
YU Zhiqiang
E-mail:yuzhiqiang@fudan.edu.cn
Supported by:
CLC Number:
TrendMD:
HE Yannan, YU Zhiqiang. Effect of Surface Organic Functional Modification of ZrB2 Nanosize Multiphase Ceramics on the Thermal Properties of Its Composites†[J]. Chem. J. Chinese Universities, 2015, 36(9): 1846.
Fig.1 FTIR spectra of ZrB2-Al2O3 multiphase particlesa. Unmodified; b. modified with γ-aminopropyltriethoxysilane; c. modified with γ-glycidoxypropyltrimethoxysilane; d. modified with γ-methacryloxypropyltrimethoxysilane.
Fig.2 XPS spectra of ZrB2-Al2O3 multiphase particles(A) Unmodified; (B) modified with γ-aminopropyltriethoxysilane; (C) modified with γ-glycidoxypropyltrimethoxysilane;(D) modified with γ-methacryloxypropyltrimethoxysilane.
ZrB2-Al2O3 Multiphase particle | EB(O1s)/eV | EB(S | EB(Al2p)/eV |
---|---|---|---|
Unmodified | 534.0 | 103.0 | 76.0 |
Modified with γ-aminopropyltriethoxysilane | 528.0 | 97.0 | 71.0 |
Modified with γ-glycidoxypropyltrimethoxysilane | 531.0 | 101.0 | 74.0 |
Modified with γ-methacryloxypropyltrimethoxysilane | 533.0 | 103.0 | 75.0 |
Table 1 Binding energy(EB) of elements on the surface of different particles
ZrB2-Al2O3 Multiphase particle | EB(O1s)/eV | EB(S | EB(Al2p)/eV |
---|---|---|---|
Unmodified | 534.0 | 103.0 | 76.0 |
Modified with γ-aminopropyltriethoxysilane | 528.0 | 97.0 | 71.0 |
Modified with γ-glycidoxypropyltrimethoxysilane | 531.0 | 101.0 | 74.0 |
Modified with γ-methacryloxypropyltrimethoxysilane | 533.0 | 103.0 | 75.0 |
Fig.5 TEM images of composites filled with ZrB2-Al2O3 multiphase particles unmodified(A), modified with γ-aminopropyltriethoxysilane(B), γ-glycidoxypropyltrimethoxysilane(C) and γ-methacryloxypropyltrimethoxysilane(D)
Fig.6 DMA curves of epoxy resin and composites modified by γ-glycidoxypropyltrimethoxy-silanea. Epoxy resin; b. 5% ZrB2-Al2O3; c. 5% modified ZrB2-Al2O3; d. 10% modified ZrB2-Al2O3; e. 15% modified ZrB2-Al2O3.
Fig.7 TGA curves of epoxy resin and composites modified by γ-glycidoxypropyltrimethoxy-silanea. Epoxy resin; b. 5% ZrB2-Al2O3; c. 5% modified ZrB2-Al2O3; d. 10% modified ZrB2-Al2O3; e. 15% modified ZrB2-Al2O3.
Filler | Ti/℃ | Te/℃ | Tmax/℃ |
---|---|---|---|
Epoxy resin | 318.6 | 392.1 | 367.8 |
5% ZrB2-Al2O3 | 337.6 | 394.6 | 375.4 |
5% Modified ZrB2-Al2O3 | 367.6 | 403.9 | 392.7 |
10% Modified ZrB2-Al2O3 | 341.6 | 399.1 | 381.1 |
15% Modified ZrB2-Al2O3 | 325.2 | 396.6 | 375.2 |
Table 2 TGA results of epoxy resin and composites
Filler | Ti/℃ | Te/℃ | Tmax/℃ |
---|---|---|---|
Epoxy resin | 318.6 | 392.1 | 367.8 |
5% ZrB2-Al2O3 | 337.6 | 394.6 | 375.4 |
5% Modified ZrB2-Al2O3 | 367.6 | 403.9 | 392.7 |
10% Modified ZrB2-Al2O3 | 341.6 | 399.1 | 381.1 |
15% Modified ZrB2-Al2O3 | 325.2 | 396.6 | 375.2 |
[1] | Mustata F., Tudorachi N., Bicu I., Composites Part B, 2013, 55(12), 470—478 |
[2] | Wu Y. Q., Zeng M., Xu Q. G., Hou S. E., Jin H. Y., Fan L. R., Tribol. Int., 2012, 54(10), 51—57 |
[3] | Guo Q. P., Zheng H. F., Polym., 1999, 40(3), 637—646 |
[4] | Jin F. L., Park S. J., Polym. Degrad. Stabil., 2012, 97(11), 2148—2153 |
[5] | Kim K., Kim M., Kim J., Comp. Sci. Tech., 2014, 103(10), 72—77 |
[6] | Yu Z. Q., You S. L., Baier H., Polym. Comp., 2012, 33(9), 1516—1524 |
[7] | Radoman T.Dunuzovic' E. S., Mater. Design, 2014, 62(10), 158—167 |
[8] | Yu Z. Q., You S. L., Yang Z. G., Baier H., Adv. Comp. Mater., 2011, 20(5), 487—502 |
[9] | Hwang Y., Kim M., Kim J., Chem. Eng. J., 2014, 246(6), 229—237 |
[10] | Peng W. Y., Huang X. Y., Yu J. H., Jiang P. K., Liu W. H., Composites Part A, 2010, 41(9), 1201—1209 |
[11] | Ding Z. H., Qiu L. X., Zhang J., Yao B., Cui T., Guan W. M., Zheng W. T., Wang W. Q., J. Alloys Compd., 2012, 521(4), 66—70 |
[12] | Monteverde F., Bellosi A., Guicciardi S., J. Eur. Ceram. Soc., 2002, 22(3), 279—288 |
[13] | Wei B. G., Chang Q., Bao C. X., Dai L., Collo. Surf. A: Physicochemical and Engineering Aspects, 2013, 434(10), 276—280 |
[14] | Yue Y. L., Zhang X. H., Xu Y. C., Mater. Lett., 2014, 136(12), 356—358 |
[15] | Sroda M., Paluszkiewicz C., Vibra. Spectro., 2008, 48(2), 246—250 |
[1] | LIANG Pingping, LIU Shuai, LI Hongyi, DING Yadan, WEN Xiaokun, LIU Junping, HONG Xia. Self-floating Porous PVDF-CNT Microbeads for Highly Efficient Solar-driven Interfacial Water Evaporation [J]. Chem. J. Chinese Universities, 2021, 42(8): 2689. |
[2] | WANG Xianwei, KE Hongjun, YUAN Hang, LU Gewu, LI Liying, MENG Xiangsheng, SONG Shulin, WANG Zhen. High Temperature Resistant and Soluble Polyimide Resins and Their Composites [J]. Chem. J. Chinese Universities, 2021, 42(6): 2041. |
[3] | XU Xiaozhou, LIU Yi, HE Minhui, MO Song, LAN Bangwei, ZHAI Lei, FAN Lin. Effect of Copolymerization Structure and Molecular Weight on Melt Fluidity and Thermal Properties of Thermoplastic Polyimide Resins [J]. Chem. J. Chinese Universities, 2021, 42(3): 919. |
[4] | DONG Luming, SU Yanyue, WANG Chunzheng, QIAO Yafei, CHEN Yajun, MA Haiyun. Synthesis of Micro- to Nano-scale Perovskite Calcium Hydroxytinate and Its Performance as a Flame Retardant in Epoxy Resin [J]. Chem. J. Chinese Universities, 2021, 42(3): 937. |
[5] | WANG Peng, MAO Dan, WAN Jiawei, QI Qi, DU Jiang, WANG Dan. Effect of Hollow Multi-shelled TiO2 on Mechanical Properties of Epoxy Resin Composites [J]. Chem. J. Chinese Universities, 2021, 42(10): 3218. |
[6] | SHA Di, YU Xumin, ZHAO Jiang, MA Xiaofei, WANG Hanfu, LIU Fangfang, QIU Xuepeng. Preparation and Mechanical Properties of Carbon Fiber Triaxial Woven Fabric/Epoxy Composites † [J]. Chem. J. Chinese Universities, 2020, 41(4): 838. |
[7] | SONG Li, LIN Jiaxiang, HUANG Dinghai. New Thermal Features of Ethylene-based Polyolefins with Different Chain Architectures as Investigated by Step Scan Differential Scanning Calorimetry Method [J]. Chem. J. Chinese Universities, 2019, 40(8): 1740. |
[8] | YIN Ping,YAN Hongqiang,CHENG Jie,FANG Zhengping. Synthesis and Properties of a Novel Bio-based Benzoxazine† [J]. Chem. J. Chinese Universities, 2019, 40(5): 1071. |
[9] | HAN Tao,CAI Xiaoxia,LI Cong,QIAO Congde,ZHAO Hui. Preparation and Properties Characterization of Biobased Dihydrocoumarin Toughened Epoxy Resin† [J]. Chem. J. Chinese Universities, 2019, 40(5): 1043. |
[10] | WANG Na,YANG Fei,ZHANG Jing,FANG Qinghong. Inflame-retardant Water-borne Epoxy Resin of APP Microsphere with Carrageenan Cladding† [J]. Chem. J. Chinese Universities, 2019, 40(2): 385. |
[11] | Minwen JIANG,Chenhui YIN,Sheng LI,Xiaoli LI. Synthesis of DOPO-based Cyclotriphosphazene Macromolecule Flame Retardant and Its Performance in Flame-retarded Epoxy Resin † [J]. Chem. J. Chinese Universities, 2019, 40(12): 2615. |
[12] | QIAN Yihao, ZHANG Dongjie, CHENG Zhongjun, KANG Hongjun, LIU Yuyan. Preparation of Hydrophilic Epoxy Resin and Its Wettability Regulation† [J]. Chem. J. Chinese Universities, 2018, 39(8): 1823. |
[13] | WANG Yingnan, DAI Xueyan, XU Tianlu, QU Lijie, ZHANG Chunling. Preparation and Anticorrosion Properties of Silane Grafted Nano-silica/Epoxy Composite Coating† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1564. |
[14] | ZHANG Shupeng, CHENG Youxing, REN Lei, WEN Kai, LÜ Xiaolin, YE Shefang, ZHOU Xi. Reparation and Photothermal Properties of Prussian Blue Nanoparticles with Different Morphologies† [J]. Chem. J. Chinese Universities, 2018, 39(2): 359. |
[15] | LU Lingang,CHENG Zhe,QIU Xinming,WANG Huiya,YANG Shousheng,QIAN Xiaodong,WANG Xuebao. Preparation of Green Star-topology Phosphazene Flame Retardant and Properties of Flame-retardant Epoxy Resin† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2789. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||