Chem. J. Chinese Universities ›› 2014, Vol. 35 ›› Issue (2): 205.doi: 10.7503/cjcu20131065
• Review • Previous Articles Next Articles
ZHOU Ding1, XU Xiaowei2, LIU Min1, ZHANG Hao1,*(), SUN Hongchen2,*(
)
Received:
2013-11-04
Online:
2014-02-10
Published:
2013-12-30
Contact:
ZHANG Hao,SUN Hongchen
E-mail:hao_zhang@jlu.edu.cn;hcsun@jlu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHOU Ding, XU Xiaowei, LIU Min, ZHANG Hao, SUN Hongchen. High Sensitivity Luminescence Nanothermometry on the Basis of Lattice Dilation of Nanocrystals†[J]. Chem. J. Chinese Universities, 2014, 35(2): 205.
Fig.1 Fluorescence spectra of CdTe nanocrystals(NCs) at different temperatures(A), fluorescence peak intensity of CdTe NCs as a function of temperature(B) and fluorescence peak intensity of CdTe NCs as a function of temperature with an irreversible effect after heating to 140 ℃(C)[3]
Fig.2 Schematic diagram of noncontact temperature characterization using NCs through emission spectral shifts(A) and representative spectrum-position image containing several single NCs(B)[52]
Fig.3 Peak emission wavelength of the CdSe-NCs fluorescence as a function of the gold nanorod solution temperature(A), schematic diagram of the double beam confocal microscope(B) and fluorescence emission spectrum obtained for the CdSe-NCs incorporated into the gold nanorod solution under 488 nm excitation in the presence/absence of optical excitation of the surface plasmon resonance(SPR) of gold nanorods(C)[50]
Fig.4 Gradient fluorescence of α-CD- and β-CD-decorated CdTe NCs aqueous solution in quartz tubes(A), fluorescence spectra of β-CD-decorated CdTe NCs that are measured with the increase of temperature from -35 ℃ to 90 ℃ at a step of 5 ℃(red solid) and that from 90 ℃ to -35 ℃(white dash)(B), temperature-dependent fluorescence peak position of β-CD-decorated CdTe NCs(C), and CIE chromaticity diagram showing the temperature dependence of the (x, y) color coordinates of β-CD-decorated CdTe NCs(D)[81]
Fig.5 β-CD-decorated CdTe NCs as the nanothermometer to exhibit the photothermal behavior of PPy-enveloped branched Au NPs[81] (A),(B) Optical photographs of CdTe and Au-CdTe mixture without(A) and with 808 nm irradiation(B); (C),(D) the dependence of the fluorescence spectra(C) and the shifts of peak positions(D) on the irradiation duration. Insets of (D): the fluorescent images of Au-CdTe mixture before and after 11 min irradiation. (E) Optical photograph of Au-CdTe film. Temperature maps of Au-CdTe film with 0 s(F), 30 s(G) and 60 s(H) irradiation, after which the film is cooled down to room temperature(I). The laser power density is 3 W/cm2.
Fig.6 Variable-temperature PL spectra of colloidal Zn1-xMnxSe/ZnS/CdS/ZnS NCs, measured in octadecene under nitrogen[59] (A) Spectra were normalized to total integrated intensity; (B) thermometric response curve plotting Iexc/Itot vs. temperature for these NCs, a maximum slope of 7.3×10-3 ℃-1 was obtained.
Fig.7 Si NCs act as excellent nanothermometers through the FLIM technique[99](A) Fluorescence decay curves corresponding to Si NCs at different temperatures; (B) temperature variation of FLT obtained for Si NCs; (C) schematic diagram of the experimental setup used to monitor local heating experiment; (D) pseudocolor thermal distribution images of the temperature-sensitive Si NCs aqueous solution; (E) pseudocolor thermal imaging of a character pattern.
[1] | Clausen T., van Hardeveld C., Everts M. E., Physiol. Rev., 1991, 71(3), 733—774 |
[2] | Narberhaus F., Waldminghaus T., Chowdhury S., FEMS Microbiol. Rev., 2006, 30(1), 3—16 |
[3] | Wang S. P., Westcott S., Chen W., J. Phys. Chem. B, 2002, 106(43), 11203—11209 |
[4] | Lee J., Kotov N. A., Nano Today, 2007, 2(1), 48—51 |
[5] | Alivisatos A. P., Science, 1996, 271(5251), 933—937 |
[6] | Klimov V. I., Mikhailovsky A. A., Xu S., Malko A., Hollingsworth J. A., Leatherdale C. A., Eisler H. J., Bawendi M. G., Science, 2000, 290(5490), 314—317 |
[7] | Murray C. B., Norris D. J., Bawendi M. G., J. Am. Chem. Soc., 1993, 115(19), 8706—8715 |
[8] | Rajh T., Nozik A. J., J. Phys. Chem., 1993, 97(46), 11999—12003 |
[9] | Nirmal M., Brus L., Acc. Chem. Res., 1999, 32(5), 407—414 |
[10] | Chan W. C. W., Nie S. M., Science, 1998, 281(5385), 2016—2018 |
[11] | Cao Y. W., Banin U., J. Am. Chem. Soc., 2000, 122(40), 9692—9702 |
[12] | Tang K. B., Qian Y. T., Zeng J. H., Yang X. G., Adv. Mater., 2003, 15(5), 448—450 |
[13] | Gaponik N., Talapin D. V., Rogach A. L., Hoppe K., Shevchenko E. V., Kornowski A., Eychmüller A., Weller H., J. Phys. Chem. B, 2002, 106(29), 7177—7185 |
[14] | Rogach A. L., Franzl T., Klar T. A., Feldmann J., Gaponik N., Lesnyak V., Shavel A., Eychmüller A., Rakovich Y. P., Donegan J. F., J. Phys. Chem. C, 2007, 111(40), 14628—14637 |
[15] | Gaponik N., Rogach A. L., Phys. Chem. Chem. Phys., 2010, 12(31), 8685—8693 |
[16] | Bao H. B., Gong Y. J., Li Z., Gao M. Y., Chem. Mater., 2004, 16(20), 3853—3859 |
[17] | Zhang H., Lu G., Ji X. L., Li Z., Yang B., Chem. J. Chinese Universities, 2003, 24(1), 178—180 |
(张皓, 陆广, 纪秀磊, 李哲, 杨柏.高等学校化学学报,2003, 24(1), 178—180) | |
[18] | Tang Z. Y., Zhang Z. L., Wang Y., Glotzer S. C., Kotov N. A., Science, 2006, 314(5797), 274—278 |
[19] | Traore Z. S., Su X. G., Chem. Res. Chinese Universites, 2012, 28(4), 604—608 |
[20] | Zhang H., Yang B., Chem. J. Chinese Universities, 2008, 29(2), 217—229 |
(张皓, 杨柏.高等学校化学学报,2008, 29(2), 217—229) | |
[21] | He Y., Sai L. M., Lu H. T., Hu M., Lai W. Y., Fan Q. L., Wang L. H., Huang W., Chem. Mater., 2007, 19(3), 359—365 |
[22] | Zheng Y. G., Gao S. J., Ying J. Y., Adv. Mater., 2007, 19(3), 376—380 |
[23] | Li Y. B., Zhang H. X., Guo C. X., Hu G. Q., Du H. Y., Jin M. H., Huang P. L., Sun Z. Z., Yang W. S., Chem. Res. Chinese Universites, 2012, 28(2), 276—281 |
[24] | Zou L., Gu Z. Y., Zhang N., Zhang Y. L., Fang Z., Zhu W. H., Zhong X. H., J. Mater. Chem., 2008, 18(24), 2807—2815 |
[25] | Manna L., Scher E. C., Alivisatos A. P., J. Am. Chem. Soc., 2000, 122(51), 12700—12706 |
[26] | Peng X. G., Manna L., Yang W. D., Wickham J., Scher E., Kadavanich A., Alivisatos A. P., Nature, 2000, 404(6773), 59—61 |
[27] | Peng Z. A., Peng X. G., J. Am. Chem. Soc., 2001, 123(7), 1389—1395 |
[28] | Wang Y. P., Zhang K., Wei H. T., Meng Q. N., Zhou D., Jiang L. M. Yang B., Chem. J. Chinese Universities, 2010, 31(11), 2153—2156 |
(王燕萍, 张恺, 魏浩桐, 孟庆男, 周鼎, 姜力铭, 杨柏.高等学校化学学报,2010, 31(11), 2153—2156) | |
[29] | Kumar S., Nann T., Small, 2006, 2(3), 316—329 |
[30] | Shen H. B., Wang H. Z., Chen X., Niu J. Z., Xu W., Li X. M., Jiang X. D., Du Z., Li L. S., Chem. Mater., 2010, 22(16), 4756—4761 |
[31] | Wang M. P., Lin J. H., Shan C. S., Chem. Res. Chinese Universites, 2011, 27(4), 540—542 |
[32] | Wang C. X., Wang Y., Xu L., Shi X. D., Li X. W., Xu X. W., Sun H., Yang B., Lin Q., Small, 2013, 9(3), 413—420 |
[33] | Swafford L. A., Weigand L. A., Bowers M. J., McBride J. R., Rapaport J. L., Watt T. L., Dixit S. K., Feldman L. C., Rosenthal S. J., J. Am. Chem. Soc., 2006, 128(37), 12299—12306 |
[34] | Regulacio M. D., Han M. Y., Acc. Chem. Res., 2010, 43(5), 621—630 |
[35] | Wang C., Zhang D., Xu L., Jiang Y., Dong F., Yang B., Yu K., Lin Q., Angew. Chem. Int. Ed., 2011, 50(33), 7587—7591 |
[36] | Brites C. D. S., Lima P. P., Silva N. J. O., Millán A., Amaral V. S., Palacio F., Carlos L. D., Nanoscale, 2012, 4(16), 4799—4829 |
[37] | Jaque D., Vetrone F., Nanoscale, 2012, 4(15), 4301—4326 |
[38] | McLaurin E. J., Bradshaw L. R., Gamelin D. R., Chem. Mater., 2013, 25(8), 1283—1292 |
[39] | Yu W. W., Peng X. G., Angew. Chem. Int. Ed., 2002, 41(13), 2368—2371 |
[40] | Warner J. H., Tilley R. D., Adv. Mater., 2005, 17(24), 2997—3001 |
[41] | Bao H. F., Wang E. K., Dong S. J., Small, 2006, 2(4), 476—480 |
[42] | Walker G. W., Sundar V. C., Rudzinski C. M., Wun A. W., Bawendi M. G., Nocera D. G., Appl. Phys. Lett., 2003, 83(17), 3555—3557 |
[43] | Lee J., Govorov A. O., Kotov N. A., Angew. Chem. Int. Ed., 2005, 117(45), 7605—7608 |
[44] | Joshi A., Narsingi K. Y., Manasreh M. O., Davis E. A., Weaver B. D., Appl. Phys. Lett., 2006, 89(13), 131907 |
[45] | Al Salman A., Tortschanoff A., Mohamed M. B., Tonti D., van Mourik F., Chergui M., Appl. Phys. Lett., 2007, 90(9), 093104 |
[46] | Valerini D., Cretí A., Lomascolo M., Manna L., Cingolani R., Anni M., Phys. Rev. B, 2005, 71(23), 235409 |
[47] | Nonoguchi Y., Nakashima T., Kawai T., J. Phys. Chem. C, 2007, 111(32), 11811—11815 |
[48] | Pugh-Thomas D., Walsh B. M., Gupta M. C., Nanotechnology, 2011, 22(18), 185503 |
[49] | Chattopadhyay S., Sen P., Thomas Andrews J., Kumar Sen P., J. Appl. Phys., 2012, 111(3), 034310 |
[50] | Maestro L. M., Haro-González P., Coello J. G., Jaque D., Appl. Phys. Lett., 2012, 100(20), 201110 |
[51] | Yue Y., Wang X. W., Nano Rev., 2012, 3(0), 11586 |
[52] | Li S., Zhang K., Yang J. M., Lin L. W., Yang H., Nano Lett., 2007, 7(10), 3102—3105 |
[53] | Vetrone F., Naccache R., Zamarrón A., Juarranz dela Fuente A., Sanz-Rodríguez F., Martinez Maestro L., Martín Rodriguez E., Jaque D., García Solé J., Capobianco J. A., ACS Nano, 2010, 4(6), 3254—3258 |
[54] | Vlaskin V. A., Janssen N., van Rijssel J., Beaulac R., Gamelin D. R., Nano Lett., 2010, 10(9), 3670—3674 |
[55] | Fischer L. H., Harms G. S., Wolfbeis O. S., Angew. Chem. Int. Ed., 2011, 50(20), 4546—4551 |
[56] | Zhang W., He X. W., Li W. Y., Zhang Y. K., Chem. Commun., 2012, 48(12), 1757—1759 |
[57] | Chen P. C., Chen Y. N., Hsu P. C., Shih C. C., Chang H. T., Chem. Commun., 2013, 49(16), 1639—1641 |
[58] | Hsia C. H., Wuttig A., Yang H., ACS Nano, 2011, 5(12), 9511—9522 |
[59] | McLaurin E. J., Vlaskin V. A., Gamelin D. R., J. Am. Chem. Soc., 2011, 133(38), 14978—14980 |
[60] | Albers A. E., Chan E. M., McBride P. M., Ajo-Franklin C. M., Cohen B. E., Helms B. A., J. Am. Chem. Soc., 2012, 134(23), 9565—9568 |
[61] | Feng J., Tian K. J., Hu D. H., Wang S. Q., Li S. Y., Zeng Y., Li Y., Yang G. Q., Angew. Chem. Int. Ed., 2011, 50(35), 8072—8076 |
[62] | Liang R. Z., Tian R., Shi W. Y., Liu Z. H., Yan D. P., Wei M., Evans D. G., Duan X., Chem. Commun., 2013, 49(10), 969—971 |
[63] | Zhou D., Lin M., Liu X., Li J., Chen Z. L., Yao D., Sun H. Z., Zhang H., Yang B., ACS Nano, 2013, 7(3), 2273—2283 |
[64] | Wise F. W., Acc. Chem. Res., 2000, 33(11), 773—780 |
[65] | Narayanaswamy A., Feiner L. F., van Der Zaag P. J., J. Phys. Chem. C, 2008, 112(17), 6775—6780 |
[66] | Dai Q. Q., Zhang Y., Wang Y. N., Hu M. Z., Zou B., Wang Y. D., Yu W. W., Langmuir, 2010, 26(13), 11435—11440 |
[67] | Yeon Woo J., Kumar Tripathy S., Kim K., Han C. S., Appl. Phys. Lett., 2012, 100(6), 063105 |
[68] | Nair P. V., Thomas K. G., J. Phys. Chem. A Lett., 2010, 1(14), 2094—2098 |
[69] | Califano M., Franceschetti A., Zunger A., Nano Lett., 2005, 5(12), 2360—2364 |
[70] | Kippeny T. C., Bowers M. J., Dukes A. D., McBride J. R., Orndorff R. L., Garrett M. D., Rosenthal S. J., J. Chem. Phys., 2008, 128(8), 084713 |
[71] | Califano M., Gómez-Campos F. M., Nano Lett., 2013, 13(5), 2047—2052 |
[72] | Wu W. Z., Yu D. Q., Ye H. A., Gao Y. C., Chang Q., Nanoscale Res. Lett., 2012, 7(1), 301 |
[73] | Varshni Y. P., Physica, 1967, 34(1), 149—154 |
[74] | Chin P. T. K., de Mello Donegá C., van Bavel S. S., Meskers S. C. J., Sommerdijk N. A. J. M., Janssen R. A. J., J. Am. Chem. Soc., 2007, 129(48), 14880—14886 |
[75] | Narayanaswamy A., Feiner L. F., Meijerink A., van der Zaag P. J., ACS Nano, 2009, 3(9), 2539—2546 |
[76] | Wen X. M., Sitt A., Yu P., Toh Y. R., Tang J., Phys. Chem. Chem. Phys., 2012, 14(10), 3505—3512 |
[77] | Bonghwan C., Jiwon B., Juwon P., Cherlhyun J., Jong Hwa C., Jong-Bong L., Taiha J., Sungjee K., J. Phys. Chem. C, 2011, 115(2), 436—442 |
[78] | Zhou D., Zhang H., Small, 2013, 9(19), 3195—3197 |
[79] | Zhong X. H., Feng Y. Y., Knoll W., Han M. Y., J. Am. Chem. Soc., 2003, 125(44), 13559—13563 |
[80] | Liu Y., Yao D., Shen L., Zhang H., Zhang X. D., Yang B., J. Am. Chem. Soc., 2012, 134(17), 7207—7210 |
[81] | Zhou D., Lin M., Chen Z. L., Sun H. Z., Zhang H., Sun H. C., Yang B., Chem. Mater., 2011, 23(21), 4857—4862 |
[82] | Betzel C., Saenger W., Hingerty B. E., Brown G. M., J. Am. Chem. Soc., 1984, 106(24), 7545—7557 |
[83] | Wood D. J., Hruska F. E., Saenger W., J. Am. Chem. Soc., 1977, 99(6), 1735—1740 |
[84] | Kozár T., Venanzi C. A., J. Mol. Struct., 1997, 395/396, 451—468 |
[85] | Lipkowitz K. B., Chem. Rev., 1998, 98(5), 1829—1873 |
[86] | Schneider H. J., Hacket F., Rüdiger V., Ikeda H., Chem. Rev., 1998, 98(5), 1755—1785 |
[87] | Schöps O., Le Thomas N., Woggon U., Artemyev M. V., J. Phys. Chem. B, 2006, 110(5), 2074—2079 |
[88] | Sakaue H., Aikawa A., Iijima Y., Sens. Actuators B, 2010, 150(2), 569—573 |
[89] | Yoo J. H., Park S. J., Kim J. S., Mol. Cryst. Liq. Cryst., 2010, 519(1), 62—68 |
[90] | Jaschinski E., Wehner M., Appl. Phys. A, 2012, 107(3), 691—696 |
[91] | Jaque D., Maestro L. M., Escudero E., Rodríguez E. M., Capobianco J. A., Vetrone F., Juarranz dela Fuente A., Sanz-Rodríguez F., Iglesias-de la Cruz M. C., Jacinto C., Rocha U., García Solé J., J. Lumin., 2013, 133(1), 249—253 |
[92] | Haro-González P., Martínez-Maestro L., Martín I. R., García-Solé J., Jaque D., Small, 2012, 8(17), 2652—2658 |
[93] | Rojas M. T., Königer R., Stoddart J. F., Kaifer A. E., J. Am. Chem. Soc., 1995, 117(1), 336—343 |
[94] | Van de Broek B., Devoogdt N., D'Hollander A., Gijs H. L., Jans K., Lagae L., Muyldermans S., Maes G., Borghs G., ACS Nano, 2011, 5(6), 4319—4328 |
[95] | Adachi S., Handbook on Physical Properties of Semiconductors, Springer,Berlin, 2004, 3 |
[96] | McDowell G. R., Holmes-Smith A. S., Uttamlal M., Wallace P. A., Faichnie D. M., Graham A., McStay D., J. Phys.: Conf. Ser., 2013, 450(1), 012008 |
[97] | Han B., Hanson W. L., Bensalah K., Tuncel A., Stern J. M., Cadeddu J. A., Ann. Biomed. Eng., 2009, 37(6), 1230—1239 |
[98] | Freddi S., Sironi L., D’Antuono R., Morone D., Donà A., Cabrini E., D’Alfonso L., Collini M., Pallavicini P., Baldi G., Maggioni D., Chirico G., Nano Lett., 2013, 13(5), 2004—2010 |
[99] | Li Q., He Y., Chang J., Wang L., Chen H. Z., Tan Y. W., Wang H. Y., Shao Z. Z., J. Am. Chem. Soc., 2013, 135(40), 14924—14927 |
[100] | Lee C. G., Uehara M., Yamaguchi Y., Nakamura H., Maeda H., IFMBE Proceedings, 2007, 14(1), 254—257 |
[101] | Wang J. W., Huang L., Appl. Phys. Lett., 2011, 98(11), 113102 |
[102] | Haro-González P., Ramsay W. T., Maestro L. M., del Rosal B., Santacruz-Gomez K., del Carmen Iglesias-dela Cruz M., Sanz-Rodríguez F., Chooi J. Y., Sevilla P. R., Bettinelli M., Choudhury D., Kar A. K., Solé J. G., Jaque D., Paterson L., Small, 2013, 9(12), 2162—2170 |
[103] | Nonoguchi Y., Nakashima T., Kawai T., J. Phys. Chem. C, 2009, 113(27), 11464—11468 |
[104] | Blumling D. E., Tokumoto T., McGill S., Knappenberger K. L. Jr., Phys. Chem. Chem. Phys., 2012, 14(31), 11053—11059 |
[105] | Bol A. A., van Beek R., Ferwerda J., Meijerink A., J. Phys. Chem. Solids, 2003, 64(2), 247—252 |
[1] | ZHAO Sheng, HUO Zhipeng, ZHONG Guoqiang, ZHANG Hong, HU Liqun. Preparation of Modified Gadolinium/Boron/Polyethylene Nanocomposite and Its Radiation Shielding Performance for Neutron and Gamma-ray [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220039. |
[2] | SHI Ying, HU Guangjian, WU Minjie, LI Feng. Applications of Low Temperature Plasma for the Materials in Li-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(5): 1315. |
[3] | JI Shaobo, CHEN Xiaodong. Surface and Interface Chemistry in Flexible Electronics [J]. Chem. J. Chinese Universities, 2021, 42(4): 1074. |
[4] | YAN Fanyong, SUN Zhonghui, PANG Jiping, JIANG Yingxia, CHEN Yuan. Functionalized Carbon Dots of Benzothiazine Derivatives for Detection of Quercetin in Ginkgo Biloba Tea [J]. Chem. J. Chinese Universities, 2020, 41(8): 1768. |
[5] | PENG Xinyan, LIU Yunhong, LI Jiawen, FENG Yilong, WANG Hanchun. Preparation and Characterization of Tannin/Zwitterionic Modified Oil-water Separation Membrane [J]. Chem. J. Chinese Universities, 2020, 41(6): 1337. |
[6] | CHEN Liangdan,ZOU Wei,WU Liang,XIA Fanjie,HU Zhiyi,LI Yu,SU Baolian. Nano-Al2O3 Coated Li-rich Cathode Material Li1. 2Ni0.13Co0.13Mn0.54O2 for Highly Improved Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2020, 41(6): 1329. |
[7] | LIU Shuaizhuo,ZHANG Qian,LIU Ning,XIAO Wenyan,FAN Leiyi,ZHOU Ying. One-step Synergistic Hydrophobic Modification of Melamine Sponge and Its Application [J]. Chem. J. Chinese Universities, 2020, 41(3): 521. |
[8] | ZHANG Xinyu, WANG Hong, FANG Yun, FAN Ye. Stimuli-responsive Fe3O4 Nanoparticle Modified by Conjugated Linoleic Acid [J]. Chem. J. Chinese Universities, 2020, 41(11): 2519. |
[9] | MAO Long, LIU Yuejun, FAN Shuhong. Preparation and Properties of Polypyrrole Modified Layered Clay/poly(ε-caprolactone) Antibacterial Nanocomposites [J]. Chem. J. Chinese Universities, 2019, 40(8): 1726. |
[10] | SUI Jiayang, LIU Xiaoyang, QIAN Miaomiao, ZHU Yanchao, XUE Beichen, FENG Yi, TIAN Yumei, WANG Xiaofeng. Surface Modification of Silica/carbon Black Derived from Rice Husks and Its Influence on Natural Rubber Composites† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1561. |
[11] | LIU Zile, ZENG Zequan, YANG Jieyang, CUI Yan, WU Ailian, LI Zhe, HUANG Zhanggen. Degradation of Phenol with Persulfate Activated by Surface Modified Activated Carbon† [J]. Chem. J. Chinese Universities, 2017, 38(7): 1241. |
[12] | MA Zichuan, LI Junshu, XING Shengtao. Facile Cyclohexane-mediated Hydrothermal Synthesis of Modified δ-MnO2 with Enhanced Fenton-like Catalytic Activity† [J]. Chem. J. Chinese Universities, 2017, 38(4): 636. |
[13] | SUN Hui, YU Qingsong, YANG Biao, XU Guozhi. Surface Hydrophilic Modification of Poly(ether ether ketone) and Immobilization of Collagen† [J]. Chem. J. Chinese Universities, 2016, 37(6): 1154. |
[14] | LIU Jianchao, XU Miaojun, LI Bin. Hydrophobic Modification of Ammonium Polyphosphate and Its Application in Flame Retardant Polypropylene Composites† [J]. Chem. J. Chinese Universities, 2015, 36(6): 1228. |
[15] | CAO Xiaolu, WANG Longlong, WANG Yajun, XU Qunjie, LI Qiaoxia. Facile Preparation of Amino-modified Pd/TiO2/C Nanocatalyst and Its Electrocatalytic Performance for Ethanol Oxidation in Alkaline Solution† [J]. Chem. J. Chinese Universities, 2015, 36(6): 1187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||