高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (8): 20250060.doi: 10.7503/cjcu20250060

• 高分子化学 • 上一篇    下一篇

基于单体直接合成的聚酯杂化材料的结构与性能

李岩潼1, 梁倩倩2,3, 何利1, 龙欣怡1, 张迦宇1, 李佳乐1, 孙囡1, 张全平1()   

  1. 1.西南科技大学环境友好能源材料国家重点实验室/材料与化学学院,绵阳 621010
    2.四川大学高分子材料工程国家重点实验室/高分子科学与工程学院,成都 610065
    3.四川东材科技集团股份有限公司,绵阳 621030
  • 收稿日期:2025-02-28 出版日期:2025-08-10 发布日期:2025-05-28
  • 通讯作者: 张全平 E-mail:zhangqp@swust.edu.cn
  • 基金资助:
    国家自然科学基金(22309151);四川省自然科学基金(2025ZNSFSC0343)

Structure and Properties of Polyester Hybrid Materials Directly Synthesized from Monomers

LI Yantong1, LIANG Qianqian2,3, HE Li1, LONG Xinyi1, ZHANG Jiayu1, LI Jiale1, SUN Nan1, ZHANG Quanping1()   

  1. 1.State Key Laboratory of Environment?friendly Energy Materials,School of Materials and Chemistry,Southwest University of Science and Technology,Mianyang 621010,China
    2.State Key Laboratory of Polymer Materials Engineering,College of Polymer Science and Engineering Sichuan University,Chengdu 610065,China
    3.Sichuan Dongcai Science and Technology Group Co. ,Ltd. ,Mianyang 621030,China
  • Received:2025-02-28 Online:2025-08-10 Published:2025-05-28
  • Contact: ZHANG Quanping E-mail:zhangqp@swust.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(22309151);the Natural Science Foundation of Sichuan Province, China(2025ZNSFSC0343)

摘要:

聚合物杂化材料中掺杂少量无机组分会显著提升材料的力学和介电储能等物理性能. 溶液共混等传统加工策略过程复杂, 碳排放较高, 较难规模化实施. 本文采用双原位策略从有机-无机单体直接合成出聚酯杂化材料, 并利用光谱分析技术研究了有机-无机单体至聚酯杂化材料的分子结构变化. 结果表明, 聚酯原位聚合与无机组分原位生长同步, 且聚合物分子链和无机组分在分子尺度相互扩散, 形成了典型的有机-无机杂化结构; 聚酯杂化材料的拉伸强度和断裂伸长率分别从纯聚酯的58.23 MPa和17.14%提升至68.98 MPa和33.69%, 介电常数约为纯聚酯的2.1倍, 击穿强度从纯聚酯的235.03 MV/m上升至418.38 MV/m(100 ℃), 最终储能密度从纯聚酯的5.38 J/cm3提高到10.64 J/cm3(10 Hz), 提升了97.77%. 本文提供了一种低碳制备高性能聚酯杂化材料的策略, 拓展了聚酯材料功能开发和应用新思路.

关键词: 聚对苯二甲酸乙二醇酯, 有机-无机杂化材料, 力学性能, 介电性能

Abstract:

In polymer hybrid materials, a small quantity of inorganic components can significantly enhance physical properties such as mechanical and dielectric energy storage. However, traditional processing strategies like solution blending present complex procedures, high carbon emissions, and scalability challenges. This study employs a dual in situ strategy to directly synthesize polyester hybrid materials from organic-inorganic monomers, meanwhile spectroscopic analysis is utilized to investigate molecular structural evolution from monomers to the hybrid materials. The results demonstrate polyester in situ polymerization synchronizes with in situ growth of inorganic components during synthesis. More importantly, molecular-scale interdiffusion between polymer chains and inorganic components establishes a characteristic organic-inorganic hybrid structure. Tensile strength and elongation at break increase from 58.23 MPa and 17.14% for pure polyester to 68.98 MPa and 33.69%, respectively. The dielectric constant reaches approximately 2.1 times to that of pure polyester, while breakdown strength improves from 235.03 MV/m to 418.38 MV/m at 100 ℃. Consequently, the energy storage density surges from 5.38 J/cm³ to 10.64 J/cm³, representing a 97.77% enhancement. This work provides a low-carbon fabrication strategy for high-performance polyester hybrid materials, which expands functional development avenues and application potential for polyester-based materials.

Key words: Polyethylene terephthalate, Organic-inorganic hybrid material, Mechanical property, Dielectric property

中图分类号: 

TrendMD: