高等学校化学学报

• 研究论文 • 上一篇    下一篇

异戊类橡胶加工工艺对比:炭黑分散与力学性能综合分析

冯雪阳1,2,王玉阁2,贺天成2,王珂1,2,潘立佳1,2,陈思源2,尹园2,孙洪国2,郑雅芳2,卫来1,孙昭艳1,2   

  1. 1. 伊犁师范大学物理科学与技术学院,新疆凝聚态相变与微结构实验室,伊宁 835000;
    2. 中国科学院长春应用化学研究所,高分子物理与化学国家重点实验室,长春 130022
  • 收稿日期:2024-01-23 修回日期:2024-04-20 网络首发:2024-04-23 发布日期:2024-04-23
  • 通讯作者: 孙昭艳 E-mail:zysun@ciac.ac.cn
  • 基金资助:
    国家自然科学基金重大项目(批准号:52293471)资助.

Comparison of Processing Techniques for Polyisoprene Rubbers: Comprehensive Analysis of Carbon Black Dispersion and Mechanical Performance

FENG Xueyang1,2, WANG Yuge2, HE Tiancheng2, WANG Ke1,2, PAN Lijia1,2, CHEN Siyuan2, YIN Yuan2, SUN Hongguo2, ZHENG Yafang2, WEI Lai1, SUN Zhaoyan1,2   

  1. 1. Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China;
    2. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received:2024-01-23 Revised:2024-04-20 Online First:2024-04-23 Published:2024-04-23
  • Contact: SUN Zhaoyan E-mail:zysun@ciac.ac.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.52293471).

摘要: 天然橡胶、异戊橡胶和仿生橡胶的主要成分均为顺-1,4-聚异戊二烯,但在蛋白质,磷脂等成分上存在一定差异. 成分上的差异可能会导致橡胶对混炼工艺的响应不同,使填料在橡胶中的分散性产生差异,进而影响硫化胶的动静态性能. 为了探究聚异戊二烯类橡胶在不同混炼工艺下的填料分散性和胶料力学性能变化规律,本文以N220炭黑为填料,系统研究了天然橡胶、异戊橡胶和仿生橡胶这三种聚异戊二烯类橡胶在四种加工工艺下的炭黑分散性和动静态性能. 研究结果表明,天然橡胶和异戊橡胶的填料分散性和力学性能对炭黑混入时间的响应程度更强,而仿生橡胶响应较弱. 随着炭黑混入时间的延长,天然和异戊橡胶的平均聚集体粒径分别从约22 μm和19 μm下降到约9 μm,下降程度较为明显,动静态性能得到提升;而相同工艺条件下仿生橡胶的平均聚集体粒径从约20 μm下降到约16 μm,且炭黑分散状态较差. 另一方面,仿生橡胶对塑炼时间响应更为敏感,延长塑炼时间能够显著降低炭黑的平均聚集体粒径并提升其伸张疲劳性能. 为此,本文设计了较长时间塑炼(6 min)结合混炼的工艺,进一步提升了仿生橡胶的伸张疲劳性能. 为了明晰仿生橡胶对混炼和塑炼工艺响应性产生差异的原因,探究了不同加工工艺条件下仿生橡胶门尼黏度和分子量的变化规律,发现适中的分子量以及较窄的分子量分布有利于提升胶料的伸张疲劳性能.

关键词: 聚异戊二烯类橡胶, 炭黑分散, 加工响应, 力学性能

Abstract: The main components of natural rubber, polyisoprene rubber, and bionic rubber are all cis-1,4-polyisoprene, but there are certain differences in components such as proteins and phospholipids. These differences in composition may lead to different responses of rubber to compounding processes, resulting in variations in the dispersion of fillers in rubber and subsequently affecting the dynamic and static properties of vulcanized rubber. In order to investigate the variation patterns of filler dispersion and rubber mechanical properties of polyisoprene rubbers under different mixing processes, this study employed N220 carbon black as a filler and systematically investigated the carbon black dispersion and dynamic/static properties of natural rubber, polyisoprene rubber, and bionic rubber under four processing techniques. The results of the study show that the filler dispersion and mechanical properties of natural rubber and polyisoprene rubber exhibited a stronger response to the carbon black incorporating time, while bionic rubber showed a weaker response. With increasing carbon black incorporating time, the mean agglomerate size of natural rubber and polyisoprene rubber decreased from approximate 22 μm and approximate 19 μm to approximate 9 μm, resulting in a significant improvement in dynamic/static properties. In contrast, under the same processing conditions, the mean agglomerate size of bionic rubber decreased from approximate 20 μm to approximate 16 μm, and the carbon black dispersion state was poorer. On the other hand, bionic rubber showed a more sensitive response to plasticization time, and an extended plasticization time significantly reduced the mean agglomerate size of carbon black, enhancing its tensile fatigue performance. Accordingly, this study designed a process combining a longer plasticization time (6 min) with compounding, further enhancing the tensile fatigue performance of bionic rubber. To elucidate the reasons for the differential response of bionic rubber to compounding and plasticization processes, the study explored the variation patterns of Mooney viscosity and molecular weight of bionic rubber under different processing conditions. It was found that moderate molecular weight and a relatively narrow molecular weight distribution were conducive to improving the tensile fatigue performance of the rubber.

Key words: Polyisoprene-based rubber, Dispersion of carbon black, Processing response, Mechanical property

中图分类号: 

TrendMD: