高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (7): 1415.doi: 10.7503/cjcu20200251
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
收稿日期:
2020-05-06
出版日期:
2020-07-10
发布日期:
2020-06-17
通讯作者:
毛秀海,左小磊
E-mail:xhmaosinap@163.com;zuoxiaolei@sjtu.edu.cn
基金资助:
YAN Lei,MAO Xiuhai*(),ZUO Xiaolei*(
)
Received:
2020-05-06
Online:
2020-07-10
Published:
2020-06-17
Contact:
MAO Xiuhai,ZUO Xiaolei
E-mail:xhmaosinap@163.com;zuoxiaolei@sjtu.edu.cn
Supported by:
摘要:
仿生膜的构建有利于了解并掌握生物膜的功能及其机理, 同时对其在生命医学及疾病诊断等相关领域的应用具有重要意义. 以框架核酸为组装单元, 构建新型仿生膜材料是一种有效且具有发展前景的方法和研究方向. 本文综述了框架核酸的设计、 制备与表征, 总结了框架核酸修饰到脂质膜上的方式. 同时, 对框架核酸辅助的仿生膜的应用情况进行了阐述, 并探讨了框架核酸在仿生膜研究领域所面临的机遇与挑战.
中图分类号:
TrendMD:
严磊, 毛秀海, 左小磊. 框架核酸辅助的仿生膜构建. 高等学校化学学报, 2020, 41(7): 1415.
YAN Lei, MAO Xiuhai, ZUO Xiaolei. Biomimicry of Cellular Membrane with Framework Nucleic Acids†. Chem. J. Chinese Universities, 2020, 41(7): 1415.
Fig.1 Schematic representations of framework nucleic acids (A) FNAs are truly monodispersed nanostructures with precise size, shape and manipulation manipulation[11]; Copyright 2018, American Chemical Society. (B) schematic of nanostructures and TEM images for framework nucleic acids with various shapes. Scale bars, zoomed-out 100 nm and zoomed-in 50 nm[32]. Copyright 2018, Springer Nature.
Fig.2 Schematic representations of different anchoring methods for framework nucleic acids to lipid membranes (A) Porphyrins modified Framework nucleic acids with ed onto lipid membrane via hydrophobic effect[44], Copyright 2011, Wiley-VCH; (B) schematic representation of the DNA-lipid interaction via electrostatic interaction[51], Copyright 2006, American Chemical Society; (C) aptamer specifically bind to the EpCAM protein on cell surface, triggering DNA hybridization reaction to form DNA hydrogel[59], Copyright 2017, American Chemical Society.
Fig.3 Representative examples of FNAs for shaping membrane (A) Framework nucleic acids with a variety of curvatures developed to study their abilities to shape membranes[68], Copyright 2018, American Chemical Society; (B) schematic of the FNA “exoskeleton” to confine the size of liposomes products[69], Copyright 2019, Wiley-VCH.
Fig.4 Representative examples of framework nucleic acids for “Gated” transportation (A) Schematic of opening the Framework nucleic acids based nanopore with single stand DNA of “key” [68], Copyright 2018, American Chemical Society; (B) schematic illustration of artificial molecular signaling system[72], Copyright 2020, Springer Nature.
Fig.5 Framework nucleic acids based nanopore for single molecule detection[68] (A) Schematic design of the channel consisting of a barrel-shaped cap(white) and a transmembrane stem(red); (B) representative TEM images of DNA channels adhering to small unilamellar vesicles(SUVs). Copyright 2018, American Chemical Society.
Fig.6 Representative examples of framework nucleic acids for biomedical engineering and drug delivery (A) Schematic illustration of the FNA based n-simplexes and recruitment-binding induced EpCAM cluster on the cell membrane with increased binding affinity[93], Copyright 2019, American Chemical Society; (B) schematic illustration of the framework nucleic acids as drug carriers[94], Copyright 2020, Wiley-VCH.
[1] |
de Vries L., Zheng B., Fischer T., Elenko E., Farquhar M. G., Annu. Rev. Pharmacol. Toxicol., 2000, 40, 235—271
doi: 10.1146/annurev.pharmtox.40.1.235 URL pmid: 10836135 |
[2] |
Reitsma S., Slaaf D. W., Vink H., van Zandvoort M. A., oude Egbrink M. G., Pflugers. Arch., 2007, 454(3), 345—359
doi: 10.1007/s00424-007-0212-8 URL pmid: 17256154 |
[3] | Sezgin E., Levental I., Mayor S., Eggeling C., Nat. Rev. Mol. Cell Biol., 2017, 18(6), 361—374 |
[4] |
Howorka S., Science, 2016, 352, 890—891
URL pmid: 27199400 |
[5] |
Christ L., Raiborg C., Wenzel E. M., Campsteijn C., Stenmark H., Trends Biochem. Sci., 2017, 42(1), 42—56
URL pmid: 27669649 |
[6] |
Mahmoudi M., Meng J., Xue X., Liang X. J., Rahman M., Pfeiffer C., Hartmann R., Gil P. R., Pelaz B., Parak W. J., del Pino P., Carregal-Romero S., Kanaras A. G., Selvan S. T., Biotechnol. Adv., 2014, 32(4), 679—692
URL pmid: 24361955 |
[7] |
Lu N., Pei H., Ge Z. L., Simmons C. R., Yan H., Fan C. H., J. Am. Chem. Soc., 2012, 134(32), 13148—13151
URL pmid: 22809010 |
[8] | Seeman N., Nat. Biotechnol., 1999, 17(4), 11 |
[9] |
Ye D. K., Zuo X. L., Fan C. H., Annu. Rev. Anal. Chem., 2018, 11(1), 171—195
doi: 10.1146/annurev-anchem-061417-010007 URL |
[10] |
Howorka S., Nat. Nanotechnol., 2017, 12(7), 619—630
URL pmid: 28681859 |
[11] |
Ge Z. L., Gu H. Z., Li Q., Fan C. H., J. Am. Chem. Soc., 2018, 140(51), 17808—17819
URL pmid: 30516961 |
[12] |
Qu X. M., Wang S. P., Ge Z. L., Wang J. B., Yao G. B., Li J., Zuo X. L., Shi J. Y., Song S. P., Wang L. H., Li L., Pei H., Fan C. H., J. Am. Chem. Soc., 2017, 139(30), 10176—10179
URL pmid: 28712291 |
[13] |
Li J., Green A. A., Yan H., Fan C. H., Nat. Chem., 2017, 9(11), 1056—1067
doi: 10.1038/nchem.2852 URL pmid: 29064489 |
[14] |
Lin M. H., Song P., Zhou G. B., Zuo X. L., Aldalbahi A., Lou X. D., Shi J. Y., Fan C. H., Nat. Protoc., 2016, 11(7), 1244—1263
doi: 10.1038/nprot.2016.071 URL pmid: 27310264 |
[15] |
Wang S. P., Cai X. Q., Wang L. H., Li J., Li Q., Zuo X. L., Shi J. Y., Huang Q., Fan C. H., Chem. Sci., 2016, 7(4), 2722—2727
URL pmid: 28660047 |
[16] |
Zhou G. B., Lin M. H., Song P., Chen X. Q., Chao J., Wang L. H., Huang Q., Huang W., Fan C. H., Zuo X. L., Anal. Chem., 2014, 86(15), 7843—7848
doi: 10.1021/ac502276w URL pmid: 24989246 |
[17] |
Mao X. H., Li K., Liu M. M., Wang X. Y., Zhao T. X., An B. L., Cui M. K., Li Y. F., Pu J. H., Li J., Wang L. H., Lu T. K., Fan C. H., Zhong C., Nat. Commun., 2019, 10, 1395
URL pmid: 30918257 |
[18] |
Mao X. H., Simon A. J., Pei H., Shi J. Y., Li J., Huang Q., Plaxco K. W., Fan C. H., Chem. Sci., 2016, 7(2), 1200—1204
doi: 10.1039/C5SC03705K URL |
[19] |
Chao J., Wang J. B., Wang F. N., Ouyang X. Y., Kopperger E., Liu H. J., Li Q., Shi J. Y., Wang L. H., Hu J., Wang L. H., Huang W., Simmel F. C., Fan C. H., Nat. Mater., 2019, 18(3), 273—279
URL pmid: 30397311 |
[20] |
Liu W., Halverson J., Tian Y., Tkachenko A. V., Gang O., Nat. Chem., 2016, 8(9), 867—873
URL pmid: 27554413 |
[21] |
Zhang F., Jiang S., Wu S., Li Y., Mao C., Liu Y., Yan H., Nat. Nanotechnol., 2015, 10(9), 779—784
doi: 10.1038/nnano.2015.162 URL pmid: 26192207 |
[22] |
Jiang D. W., Ge Z. L., Im H. J., England C. G., Ni D. L., Hou J. J., Zhang L. H., Kutyreff C. J., Yan Y. J., Liu Y., Cho S. Y., Engle J. W., Shi J. Y., Huang P., Fan C. H., Yan H., Cai W. B., Nat. Biomed. Eng., 2018, 2(11), 865—877
URL pmid: 30505626 |
[23] |
Tian Y., Zhang Y., Wang T., Xin H. L., Li H., Gang O., Nat. Mater., 2016, 15(6), 654—661
URL pmid: 26901516 |
[24] |
Zhang Y. Y., Mao X. H., Li F., Li M., Jing X. X., Ge Z. L., Wang L. H., Liu K., Zhang H. J., Fan C. H., Zuo X. L., Angew. Chem. Int. Ed., 2020, 59(12), 4892—4896
doi: 10.1002/anie.v59.12 URL |
[25] |
Ko S., Liu H., Chen Y., Mao C., Biomacromolecules, 2008, 9(11), 3039—3043
URL pmid: 18821795 |
[26] |
Walsh A. S., Yin H., Erben C. M., Wood M. J., Turberfield A. J., ACS Nano, 2011, 5(7), 5427—5432
doi: 10.1021/nn2005574 URL pmid: 21696187 |
[27] |
Yin Y. W., Hu A. M., Sun Q. Q., Liu H. L., Wang Q., Zeng Y. H., Xu R. J., Hou Z. Z., Zhang Z. D., Zhang S. J., Zhou M. Q., Gene, 2012, 503(1), 25—30
doi: 10.1016/j.gene.2012.04.075 URL |
[28] |
Goodman R. P., Biotechniques, 2005, 38(4), 548—550
URL pmid: 15884672 |
[29] |
Seeman N. C., J. Biomol. Struct. Dyn., 1990, 8(3), 573—581
doi: 10.1080/07391102.1990.10507829 URL pmid: 2100519 |
[30] |
Benson E., Mohammed A., Gardell J., Masich S., Czeizler E., Orponen P., Hogberg B. J. N., Nature, 2015, 523(7561), 441—444
URL pmid: 26201596 |
[31] |
Rothemund P. W., Nature, 2006, 440(7082), 297—302
URL pmid: 16541064 |
[32] |
Liu X. G., Zhang F., Jing X. X., Pan M. C., Liu P., Li W., Zhu B. W., Li J., Chen H., Wang L. H., Lin J. P., Liu Y., Zhao D. Y., Yan H., Fan C. H., Nature, 2018, 559(7715), 593—598
URL pmid: 30013119 |
[33] |
Douglas S. M., Marblestone A. H., Teerapittayanon S., Vazquez A., Church G. M., Shih W. M., Nucleic Acids Res., 2009, 37(15), 5001—5006
URL pmid: 19531737 |
[34] | Williams S., Lund K., Lin C., Wonka P., Lindsay S., Yan H., ; Ed.: Goel A., Simmel F. C., Sosik P., DNA Computing, Springer, Berlin, Heidelberg, 2009, 5347, 90 |
[35] |
Jungmann R., Liedl T., Sobey T. L., Shih W., Simmel F. C., J. Am. Chem. Soc., 2008, 130(31), 10062—10063
doi: 10.1021/ja8030196 URL pmid: 18613687 |
[36] |
Mathur D., Medintz I. L., Anal. Chem., 2017, 89(5), 2646—2663
URL pmid: 28207239 |
[37] |
Dunn K. E., Dannenberg F., Ouldridge T. E., Kwiatkowska M., Turberfield A. J., Bath J., Nature, 2015, 525(7567), 82—86
URL pmid: 26287459 |
[38] |
Ke Y., Sharma J., Liu M., Jahn K., Liu Y., Yan H., Nano Lett., 2009, 9(6), 2445—2457
URL pmid: 19419184 |
[39] |
Urban M. J., Both S., Zhou C., Kuzyk A., Lindfors K., Weiss T., Liu N., Nat. Commun., 2018, 9(1), 1454
doi: 10.1038/s41467-018-03882-w URL pmid: 29654323 |
[40] |
Langecker M., Arnaut V., Martin T. G., List J., Renner S., Mayer M., Dietz H., Simmel F. C., Science, 2012, 338(6109), 932—936
URL pmid: 23161995 |
[41] |
Andersen E. S., Dong M., Nielsen M. M., Jahn K., Subramani R., Mamdouh W., Golas M. M., Sander B., Stark H., Oliveira C. L., Pedersen J. S., Birkedal V., Besenbacher F., Gothelf K. V., Kjems J., Nature, 2009, 459(7243), 73—76
URL pmid: 19424153 |
[42] |
Ishida Y., Shimada T., Masui D., Tachibana H., Inoue H., Takagi S., J. Am. Chem. Soc., 2011, 133(36), 14280—14286
URL pmid: 21809841 |
[43] |
Stulz E., Acc. Chem. Res., 2017, 50(4), 823—831
URL pmid: 28272871 |
[44] | Borjesson K., Lundberg E. P., Woller J. G., Norden B., Albinsson B., Angew. Chem. Int. Ed., 2011, 50(36), 8312—8315 |
[45] |
Beales P. A., Vanderlick T. K., J. Phys. Chem. A, 2007, 111(49), 12372—12380
URL pmid: 17997531 |
[46] |
Bunge A., Loew M., Pescador P., Arbuzova A., Brodersen N., Kang J., Dahne L., Liebscher J., Herrmann A., Stengel G., Huster D., J. Phys. Chem. B, 2009, 113(51), 16425—16434
doi: 10.1021/jp9067747 URL pmid: 19957915 |
[47] |
Pfeiffer I., Hook F., J. Am. Chem. Soc., 2004, 126(33), 10224—10225
URL pmid: 15315417 |
[48] |
Johnson-Buck A., Jiang S., Yan H., Walter N. G., ACS Nano, 2014, 8(6), 5641—5649
URL pmid: 24833515 |
[49] | Rodríguez-Pulido A., Kondrachuk A. I., Prusty D. K., Gao J., Loi M. A., Herrmann A., Angew. Chem., Int. Ed. Engl., 2013, 52(3), 1008—1012 |
[50] |
Kurz A., Bunge A., Windeck A. K., Rost M., Flasche W., Arbuzova A., Strohbach D., Muller S., Liebscher J., Huster D., Herrmann A., Angew. Chem. Int. Ed. Engl., 2006, 45(27), 4440—4444
URL pmid: 16789049 |
[51] |
Gromelski S., Brezesinski G., Langmuir, 2006, 22(14), 6293—6301
URL pmid: 16800689 |
[52] |
Huang Y. F., Shangguan D., Liu H., Phillips J. A., Zhang X., Chen Y., Tan W., Chembiochem, 2009, 10(5), 862—868
URL pmid: 19253922 |
[53] |
Shangguan D. H., Li Y., Tang Z., Cao Z. C., Chen H. W., Mallikaratchy P., Sefah K., Yang C. J., Tan W. H., Proc. Natl. Acad. Sci. USA, 2006, 103(32), 11838—11843
doi: 10.1073/pnas.0602615103 URL pmid: 16873550 |
[54] |
Song L., Jiang Q., Liu J., Li N., Liu Q., Dai L., Gao Y., Liu W., Liu D., Ding B., Nanoscale, 2017, 9(23), 7750—7754
doi: 10.1039/c7nr02222k URL pmid: 28581004 |
[55] | Zhang L. Q., Wang S., Yang Z. Y., Hoshika S., Xie S. T., Li J., Chen X. G., Wan S., Li L., Benner S. A., Tan W. H., Angew. Chem. Int. Ed., 2020, 59(2), 663—668 |
[56] |
Li L., Chen X. G., Cui C., Pan X. S., Li X. W., Yazd H. S., Wu Q., Qiu L. P., Li J., Tan W. H., J. Am. Chem. Soc., 2019, 141(43), 17174—17179
URL pmid: 31539233 |
[57] |
Xun K. Y., Pei K., Liu X. J., Peng X. Y., Du Y. L., Qiu L. P., Tan W. H., J. Am. Chem. Soc., 2019, 141(45), 18013—18020
doi: 10.1021/jacs.9b04725 URL pmid: 31626550 |
[58] |
Han D., Li J., Tan W. H., Science, 2019, 365(6455), 754—755
doi: 10.1126/science.aay4198 URL pmid: 31439783 |
[59] |
Song P., Ye D. K., Zuo X. L., Li J., Wang J., Liu H., Hwang M. T., Chao J., Su S., Wang L. H., Shi J., Wang L. H., Huang W., Lal R., Fan C. H., Nano Lett., 2017, 17(9), 5193—5198
URL pmid: 28771008 |
[60] |
Beales P. A., Ciani B., Cleasby A. J., Phys. Chem. Chem. Phys., 2015, 17(24), 15489—15507
doi: 10.1039/c5cp00480b URL pmid: 25805402 |
[61] |
van Swaay D., deMello A., Lab Chip, 2013, 13(5), 752—767
URL pmid: 23291662 |
[62] |
Wu F., Dekker C., Chem. Soc. Rev., 2016, 45(2), 268—280
doi: 10.1039/c5cs00514k URL pmid: 26383019 |
[63] |
Franquelim H. G., Khmelinskaia A., Sobczak J. P., Dietz H., Schwille P., Nat. Commun., 2018, 9(1), 811
doi: 10.1038/s41467-018-03198-9 URL pmid: 29476101 |
[64] |
Birkholz O., Burns J. R., Richter C. P., Psathaki O. E., Howorka S., Piehler J., Nat. Commun., 2018, 9(1), 1521
URL pmid: 29670084 |
[65] | Grome M. W., Zhang Z., Pincet F., Lin C., Angew. Chem. Int. Ed., 2018, 57(19), 5330—5334 |
[66] |
Yang Y., Wang J., Shigematsu H., Xu W., Shih W. M., Rothman J. E., Lin C., Nat. Chem., 2016, 8(5), 476—483
URL pmid: 27102682 |
[67] |
Zhang Z., Yang Y., Pincet F., Llaguno M. C., Lin C., X., Nat. Chem., 2017, 9(7), 653—659
doi: 10.1038/nchem.2802 URL pmid: 28644472 |
[68] |
Wu N., Chen F., Zhao Y., Yu X., Wei J., Zhao Y. X., Langmuir, 2018, 34(49), 14721—14730
doi: 10.1021/acs.langmuir.8b01818 URL pmid: 30044097 |
[69] | Fu J., Oh S. W., Monckton K., Arbuckle-Keil G., Ke Y., Zhang T., Small, 2019, 15(26), 1900256 |
[70] |
Maingi V., Burns J. R., Uusitalo J. J., Howorka S., Marrink S. J., Sansom M. S., Nat. Commun., 2017, 8, 14784
doi: 10.1038/ncomms14784 URL pmid: 28317903 |
[71] |
Burns J. R., Seifert A., Fertig N., Howorka S., Nat. Nanotechnol., 2016, 11(2), 152—156
doi: 10.1038/nnano.2015.279 URL pmid: 26751170 |
[72] |
Peng R. Z., Xu L., Wang H., Lyu Y., Wang D., Bi C., Cui C., Fan C. H., Liu Q., Zhang X. B., Tan W. H., Nat. Commun., 2020, 11(1), 978
doi: 10.1038/s41467-020-14739-6 URL pmid: 32080196 |
[73] |
Liu P., Zhao Y., Liu X., Sun J., Xu D., Li Y., Li Q., Wang L., Yang S., Fan C., Lin J., Angew. Chem. Int. Ed. Engl., 2018, 57(19), 5418—5422
doi: 10.1002/anie.201801498 URL pmid: 29528530 |
[74] |
Majd S., Yusko E. C., Billeh Y. N., Macrae M. X., Yang J., Mayer M., Curr. Opin. Biotechnol., 2010, 21(4), 439—476
doi: 10.1016/j.copbio.2010.05.002 URL pmid: 20561776 |
[75] |
Göpfrich K., Li C. Y., Ricci M., Bhamidimarri S. P., Yoo J., Gyenes B., Ohmann A., Winterhalter M., Aksimentiev A., Keyser U. F., ACS Nano, 2016, 10(9), 8207—8214
doi: 10.1021/acsnano.6b03759 URL pmid: 27504755 |
[76] |
Liu C., Huang Z. K., Jiang W., Liu X. J., Li J., Han X. Y., Tu H. J., Qiu L. P., Tan W. H., Anal. Chem., 2020, 92(5), 3620—3626
doi: 10.1021/acs.analchem.9b04493 URL pmid: 32013394 |
[77] |
Feng Q. M., Zhu M. J., Zhang T. T., Xu J. J., Chen H. Y., Analyst, 2016, 141(8), 2474—2480
doi: 10.1039/c6an00241b URL pmid: 26979920 |
[78] |
Lacroix A., Edwardson T. G. W., Hancock M. A., Dore M. D., Sleiman H. F., J. Am. Chem. Soc., 2017, 139(21), 7355—7362
doi: 10.1021/jacs.7b02917 URL pmid: 28475327 |
[79] |
Li S., Xu L., Ma W., Wu X., Sun M., Kuang H., Wang L., Kotov N. A., Xu C., J. Am. Chem. Soc., 2016, 138(1), 306—312
URL pmid: 26691742 |
[80] |
Tay C. Y., Yuan L., Leong D. T., ACS Nano, 2015, 9(5), 5609—5617
doi: 10.1021/acsnano.5b01954 URL pmid: 25906327 |
[81] |
Xie N., Huang J., Yang X., He X., Liu J., Huang J., Fang H., Wang K., Anal. Chem., 2017, 89(22), 12115—12122
doi: 10.1021/acs.analchem.7b02709 URL pmid: 29065680 |
[82] |
He L., Lu D. Q., Liang H., Xie S., Luo C., Hu M. M., Xu L. J., Zhang X. B., Tan W. H., ACS Nano, 2017, 11(4), 4060—4066
doi: 10.1021/acsnano.7b00725 URL pmid: 28328200 |
[83] |
Wang S., Xia M., Liu J., Zhang S., Zhang X., ACS Sens., 2017, 2(6), 735—739
URL pmid: 28723114 |
[84] |
He L., Lu D. Q., Liang H., Xie S. T., Zhang X. B., Liu O. L., Yuan Q., Tan W. H., J. Am. Chem. Soc., 2018, 140(1), 258—263
doi: 10.1021/jacs.7b09789 URL pmid: 29211455 |
[85] |
Zhou W., Liang W., Li D., Yuan R., Xiang Y., Biosens. Bioelectron., 2016, 85, 573—579
doi: 10.1016/j.bios.2016.05.058 URL pmid: 27236722 |
[86] |
Song P., Shen J. W., Ye D. K., Dong B. J., Wang F., Pei H., Wang J. B., Shi J. Y., Wang L. H., Xue W., Huang Y. R., Huang G., Zuo X. L., Fan C. H., Nat. Commun., 2020, 11(1), 823
doi: 10.1038/s41467-020-14481-z URL pmid: 32041958 |
[87] |
Yao G. B., Li J., Li Q., Chen X. L., Liu X. G., Wang F., Qu Z. B., Ge Z. L., Narayanan R. P., Williams D., Pei H., Zuo X. L., Wang L. H., Yan H., Feringa B., Fan C. H., Nat. Mater., 2019, doi: 10.1038/S41563-019-0549-3
doi: 10.1038/s41563-020-0699-3 URL pmid: 32541932 |
[88] |
Liu Q., Ge Z. L., Mao X. H., Zhou G. B., Zuo X. L., Shen J. W., Shi J. Y., Li J., Wang L. H., Chen X. Q., Fan C. H., Angew. Chem. Int. Ed., 2018, 57(24), 7131—7135
doi: 10.1002/anie.v57.24 URL |
[89] |
Li J., Pei H., Zhu B., Liang L., Wei M., He Y., Chen N., Li D., Huang Q., Fan C. H., ACS Nano, 2011, 5(11), 8783—8789
doi: 10.1021/nn202774x URL pmid: 21988181 |
[90] | Kim K. R., Kim D. R., Lee T., Yhee J. Y., Kim B. S., Kwon I. C., Ahn D. R., Chem. Commun., 2013, 49(20), 2010—2012 |
[91] |
Ding H. M., Li J., Chen N., Hu X. J., Yang X. F., Guo L. J., Li Q., Zuo X. L., Wang L. H., Ma Y. Q., Fan C. H., ACS Cent. Sci., 2018, 4(10), 1344—1351
doi: 10.1021/acscentsci.8b00383 URL pmid: 30410972 |
[92] |
Wang P., Rahman M. A., Zhao Z., Weiss K., Zhang C., Chen Z., Hurwitz S. J., Chen Z. G., Shin D. M., Ke Y., J. Am. Chem. Soc., 2018, 140(7), 2478—2484
doi: 10.1021/jacs.7b09024 URL pmid: 29406750 |
[93] |
Li M., Ding H., Lin M., Yin F., Song L., Mao X. H., Li F., Ge Z. L., Wang L. H., Zuo X. L., Ma Y. Q., Fan C. H., J. Am. Chem. Soc., 2019, 141(47), 18910—18915
doi: 10.1021/jacs.9b11015 URL pmid: 31691568 |
[94] | Ge Z. L., Guo L. J., Wu G. Q., Li J., Sun Y. L., Hou Y. Q., Shi J. Y., Song S. P., Wang L. H., Fan C. H., Lu H., Li Q., Small, 2020, 16(16), 1904857 |
[95] |
Ma W. J., Zhan Y. X., Zhang Y. X., Shao X., Xie X. R., Mao C. C., Cui W. T., Li Q., Shi J. Y., Li J., Fan C. H., Lin Y. F., Nano Lett., 2019, 19(7), 4505—4517
doi: 10.1021/acs.nanolett.9b01320 URL pmid: 31185573 |
[1] | 邵文惠, 胡欣, 尚静, 林峰, 金黎明, 权春善, 张艳梅, 李军. 高效广谱复合光催化抗菌剂Ag-AgVO3/BiVO4的设计合成及抗菌机制[J]. 高等学校化学学报, 2022, 43(10): 20220132. |
[2] | 刘学娇, 杨帆, 刘爽, 张春娟, 刘巧玲. 核酸适体靶向的膜蛋白识别与功能调控研究进展[J]. 高等学校化学学报, 2021, 42(11): 3277. |
[3] | 梁钰昕, 赵容, 梁馨月, 方晓红. 细胞膜上信号转导蛋白的单分子成像与分析[J]. 高等学校化学学报, 2020, 41(6): 1127. |
[4] | 高静, 黄科科, 张显龙, 孙宇, 冯守华. 干湿循环下癸酸甘油酯的非生物合成及自组装[J]. 高等学校化学学报, 2018, 39(5): 849. |
[5] | 杨珊, 王彦兵, 宗明明, 宫铭, 马佳妮, 宫永宽. 仿细胞膜结构共聚物的合成及涂层性能[J]. 高等学校化学学报, 2012, 33(07): 1579. |
[6] | 丁珊, 唐敏健, 周长忍, 闵翔, 田金环, 李立华. 胆固醇接枝壳聚糖及其性能[J]. 高等学校化学学报, 2012, 33(05): 1110. |
[7] | 夏之宁 李丽仙 陈华 熊彩侨 杨丰庆. 药物与细胞膜相互作用的ppKCE动力学参数[J]. 高等学校化学学报, 2011, 32(4): 851. |
[8] | 王健生, 张佳, 吴文安, 段小艺, 王嗣岑, 张明鑫, 周苏娜, 莫非, 徐怡庄, 石景森, 吴瑾光 . 胆囊组织、组织细胞膜及细胞株的FTIR研究[J]. 高等学校化学学报, 2010, 31(3): 484. |
[9] | 徐建平, 陈伟东, 计剑, 沈家骢 . 新型仿生聚合物胶束用于纳米药物载体的研究 [J]. 高等学校化学学报, 2007, 28(2): 394. |
[10] | 计剑, 沈家骢. 十八烷基聚氧乙烯表面空间结构和蛋白质吸附行为研究[J]. 高等学校化学学报, 2004, 25(3): 580. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||