 
	 
	高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (6): 1127.doi: 10.7503/cjcu20190663
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
收稿日期:2019-12-13
									
				
									
				
									
				
																出版日期:2020-06-10
														
				
											发布日期:2020-03-23
									
			通讯作者:
					方晓红
											E-mail:xfang@iccas.ac.cn
												基金资助:
        
               		LIANG Yuxin,ZHAO Rong,LIANG Xinyue,FANG Xiaohong*( )
)
			  
			
			
			
                
        
    
Received:2019-12-13
									
				
									
				
									
				
																Online:2020-06-10
														
				
											Published:2020-03-23
									
			Contact:
					Xiaohong FANG   
											E-mail:xfang@iccas.ac.cn
												Supported by:摘要:
结合本课题组的研究工作, 介绍了单分子荧光成像原理、 荧光标记方法及数据分析方法, 并进一步综述了单分子荧光成像在几种重要的膜蛋白信号转导分子机制和相关药物研究中的进展.
中图分类号:
TrendMD:
梁钰昕, 赵容, 梁馨月, 方晓红. 细胞膜上信号转导蛋白的单分子成像与分析. 高等学校化学学报, 2020, 41(6): 1127.
LIANG Yuxin, ZHAO Rong, LIANG Xinyue, FANG Xiaohong. Single-molecule Imaging and Analysis of Signal Transduction Proteins on Cell Membranes . Chem. J. Chinese Universities, 2020, 41(6): 1127.
 
																													Fig.2 Architecture of CLDNN(A), the analysis accuracies of CLDNN and HMM to the synthesized data sets with different aSNRs(B) and the true distribution and outputted distributions of bleaching steps analyzed by different algorithms(C)[55] Copyright 2019, American Chemical Society.
 
																													Fig.3 Principle of the RmHMM method(A, B) and dwell times on the dimeric state of the EGFR before(C) and after(D) the stimulation revealed by RmHMM[60] Copyright 2019, American Chemical Society.
 
																													Fig.4 A typical single-molecule image of TβRⅡ-GFP(A), distribution of the fluorescence intensity of diffraction-limited TβRⅡ-GFP spots, the solid curves show the fitting of Gaussian function and the two peaks represented TβRⅡ-GFP monomers and dimers, respectively(B), time courses of GFP emission after background correction show two-step bleaching(C)[12] Copyright 2009, the National Academy of Sciences of the United States of America.
 
																													Fig.5 A typical single-molecule fluorescence images of EGFP-Smad3 molecules docking on the cell membrane in the presence of TGF-β1(A), diffusion coefficient of membrane-docked EGFP-Smad3 molecules with the marked D value in HeLa cells in the presence of TGF-β1(B), cumulative histograms(solid) indicated the docking time of EGFP-Smad3 molecules in stimulated cells, the histograms were fitted with a single exponential function, the dotted lines are the fitting curves with the time constants τ(0.60 s)(C)[67] Copyright 2016, Springer Nature.
 
																													Fig.6 Triple-color live-cell confocal imaging of the cell co-expressing caveolin-1-EGFP, clathrin-DsRed and Myc-TβRⅠ, the boxed region was magnified(images to the right) to show the movement of a Myc-TβRⅠ, caveolin-1-EGFP and clathrin-DsRed triple-positive vesicle(arrows) from the lateral plasma membrane(white lines) to the cytoplasm[69] Copyright 2015, Springer Natare.
 
																													Fig.7 Principle of FRAP-SMI(A), cumulative histograms of the dwell times of newly delivered TβRⅡ-EGFPs in unstimulated(B) and stimulated cells(C)[70] Copyright 2018, American Chemical Society.
 
																													Fig.8 Aggregation states of β2AR-GFP under different conditions(A—C), the distributions of the fluorescence intensity of individual β2AR-GFP spots after the stimulation with 10 mmol/L carvedilol(A), isoproterenol(B), and propranolol(C), the fractions of one and two-step bleaching events of β2AR-GFP in the resting and drug-stimulated cells(D), before(E) and after(F) ligand stimulation in the presence of the siRNA targeting β-arrestin1(βarr1), or the siRNA targeting β-arrestin2(βarr2)[79] Copyright 2016, Royal Society of Chemistry.
| [1] | Balazsi G., van Oudenaarden A., Collins J. J.,  Cell, 2011, 144(6), 910—925 doi: 10.1016/j.cell.2011.01.030 URL | 
| [2] | Sever R., Brugge J. S.,  Cold Spring Harb. Perspect. Med., 2015, 5(4), a006098 doi: 10.1101/cshperspect.a006098 URL | 
| [3] | Insel P. A., Sriram K., Wiley S. Z., Wilderman A., Katakia T., McCann T., Yokouchi H., Zhang L., Corriden R., Liu D., Feigin M. E., French R. P., Lowy A. M., Murray F.,  Front. Pharmacol., 2018, 9, 1—11 doi: 10.3389/fphar.2018.00001 URL | 
| [4] | Lemmon M. A., Schlessinger J.,  Cell, 2010, 141(7), 1117—1134 doi: 10.1016/j.cell.2010.06.011 URL | 
| [5] | Calebiro D., Sungkaworn T.,  Trends Pharmacol. Sci., 2018, 39(2), 109—122 doi: 10.1016/j.tips.2017.10.010 URL | 
| [6] | Elf J., Barkefors I.,  Annu. Rev. Biochem., 2019, 88, 635—659 doi: 10.1146/annurev-biochem-013118-110801 URL | 
| [7] | Sako Y., Minoguchi S., Yanagida T.,  Nat. Cell Biol., 2000, 2(3), 168—172 doi: 10.1038/35004044 URL | 
| [8] | Schutz G. J., Kada G., Pastushenko V. P., Schindler H.,  Embo J., 2000, 19(5), 892—901 doi: 10.1093/emboj/19.5.892 URL | 
| [9] | Li N., Zhao R., Sun Y., Ye Z., He K. M., Fang X. H.,  Natl. Sci. Rev., 2017, 4(5), 739—760 doi: 10.1093/nsr/nww055 URL | 
| [10] | Thompson N. L., Pearce K. H., Hsieh H. V.,  Eur. Biophys. J. Biophys. Lett., 1993, 22(5), 367—378 doi: 10.1007/BF00213560 URL | 
| [11] | Demuro A., Parker I.,  Biophys. J., 2004, 86(5), 3250—3259 doi: 10.1016/S0006-3495(04)74373-8 URL | 
| [12] | Zhang W., Jiang Y. X., Wang Q., Ma X. Y., Xiao Z. Y., Zuo W., Fang X. H., Chen Y. G.,  Proc. Natl. Acad. Sci. USA, 2009, 106(37), 15679—15683 doi: 10.1073/pnas.0908279106 URL | 
| [13] | Konopka C. A., Bednarek S. Y.,  Plant J., 2008, 53(1), 186—196 doi: 10.1111/tpj.2008.53.issue-1 URL | 
| [14] | Tokunaga M., Imamoto N., Sakata-Sogawa K., Nat. Methods, 2008, 5(2), 159—161 | 
| [15] | Luo W. X., Xia T., Xu L., Chen Y. G., Fang X. H.,  J. Biophotonics, 2014, 7(10), 788—798 doi: 10.1002/jbio.201300020 URL | 
| [16] | Fu Y., Winter P. W., Rojas R., Wang V., McAuliffe M., Patterson G. H.,  Proc. Natl. Acad. Sci. USA, 2016, 113(16), 4368—4373 doi: 10.1073/pnas.1516715113 URL | 
| [17] | Sigal Y. M., Zhou R. B., Zhuang X. W.,  Science, 2018, 361(6405), 880—887 doi: 10.1126/science.aau1044 URL | 
| [18] | Zhou R. B., Han B. R., Xia C. L., Zhuang X. W.,  Science, 2019, 365(6456), 929—934 doi: 10.1126/science.aaw5937 URL | 
| [19] | Inavalli V. V. G. K., Lenz M. O., Butler C., Angibaud J., Compans B., Levet F., Tonnesen J., Rossier O., Giannone G., Thoumine O., Hosy E., Choquet D., Sibarita J. B., Nagerl U. V.,  Nat. Methods, 2019, 16(12), 1263—1268 doi: 10.1038/s41592-019-0611-8 URL | 
| [20] | Nerreter T., Letschert S., Goetz R., Doose S., Danhof S., Einsele H., Sauer M., Hudecek M.,  Nat. Commun., 2019, 10, 1—11 doi: 10.1038/s41467-018-07882-8 URL | 
| [21] | Qin G. G., Li W. H., Xu J. C., Kou X. L., Zhao R., Luo F., Fang X. H.,  Chin. J. Anal. Chem., 2017, 45(12), 1813—1822 doi: 10.1016/S1872-2040(17)61056-9 URL | 
| [22] | Cranfill P. J., Sell B. R., Baird M. A., Allen J. R., Lavagnino Z., de Gruiter H. M., Kremers G. J., Davidson M. W., Ustione A., Piston D. W.,  Nat. Methods, 2016, 13(7), 557—562 doi: 10.1038/nmeth.3891 URL | 
| [23] | Bajar B. T., Lam A. J., Badiee R. K., Oh Y. H., Chu J., Zhou X. X., Kim N., Kim B. B., Chung M., Yablonovitch A. L., Cruz B. F., Kulalert K., Tao J. J., Meyer T., Su X. D., Lin M. Z., Nat. Methods, 2016, 13(12), 993—996 | 
| [24] | Shaner N. C., Lambert G. G., Chammas A., Ni Y., Cranfill P. J., Baird M. A., Sell B. R., Allen J. R., Day R. N., Israelsson M., Davidson M. W., Wang J., Nat. Methods, 2013, 10(5), 407—409 | 
| [25] | Bajar B. T., Wang E. S., Lam A. J., Kim B. B., Jacobs C. L., Howe E. S., Davidson M. W., Lin M. Z., Chu J.,  Sci. Rep., 2016, 6(1), 20889 doi: 10.1038/srep20889 URL | 
| [26] | Bindels D. S., Haarbosch L., van Weeren L., Postma M., Wieser K. E., Mastop M., Aumonier S., Gotthard G., Royant A., Hink M. A., Gadella T. W. J. J.,  Nat. Methods, 2017, 14(1), 53—56 doi: 10.1038/nmeth.4074 URL | 
| [27] | Ran F. A., Hsu P. D., Lin C. Y., Gootenberg J. S., Konermann S., Trevino A. E., Scott D. A., Inoue A., Matoba S., Zhang Y., Zhang F.,  Cell, 2013, 154(6), 1380—1389 doi: 10.1016/j.cell.2013.08.021 URL | 
| [28] | Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E., Science, 2012, 337(6096), 816—821 | 
| [29] | Tasan I., Sustackova G., Zhang L. G., Kim J., Sivaguru M., HamediRad M., Wang Y. C., Genova J., Ma J., Belmont A. S., Zhao H. M., Nucleic Acids Res., 2018, 46(17), e100 | 
| [30] | Wang S. X., Cao J., Cheng Y. X., Lu C. H., Chem. Res. Chinese Universities, 2019, 35(6), 967—971 | 
| [31] | Xu G. P., Tang Y. H., Lin W. Y., Chem. Res. Chinese Universities, 2018, 34(4), 523—527 | 
| [32] | Liu Z., Lavis L. D., Betzig E., Mol. Cell, 2015, 58(4), 644—659 | 
| [33] | Hughes L. D., Rawle R. J., Boxer S. G.,  PLoS One, 2014, 9(2), e87649 doi: 10.1371/journal.pone.0087649 URL | 
| [34] | Grimm J. B., English B. P., Choi H., Muthusamy A. K., Mehl B. P., Dong P., Brown T. A., Lippincott-Schwartz J., Liu Z., Lionnet T., Lavis L. D., Nat. Methods, 2016, 13(12), 985—988 | 
| [35] | Karch S., Broichhagen J., Schneider J., Boening D., Hartmann S., Schmid B., Tripal P., Palmisano R., Alzheimer C., Johnsson K., Huth T., J. Med. Chem., 2018, 61(14), 6121—6139 | 
| [36] | Los G. V., Encell L. P., McDougall M. G., Hartzell D. D., Karassina N., Zimprich C., Wood M. G., Learish R., Ohane R. F., Urh M., Simpson D., Mendez J., Zimmerman K., Otto P., Vidugiris G., Zhu J., Darzins A., Klaubert D. H., Bulleit R. F., Wood K. V., ACS Chem. Biol., 2008, 3(6), 373—382 | 
| [37] | Gautier A., Juillerat A., Heinis C., Correa I. R. J., Kindermann M., Beaufils F., Johnsson K., Chem. Biol., 2008, 15(2), 128—136 | 
| [38] | Plass T., Milles S., Koehler C., Szymanski J., Mueller R., Wiessler M., Schultz C., Lemke E. A.,  Angew. Chem. Int. Ed., 2012, 51(17), 4166—4170 doi: 10.1002/anie.201108231 URL | 
| [39] | Nikic I., Plass T., Schraidt O., Szymanski J., Briggs J. A. G., Schultz C., Lemke E. A., Angew. Chem. Int. Ed., 2014, 53(8), 2245—2249 | 
| [40] | Cheng M., Zhang W., Yuan J. H., Luo W. X., Li N., Lin S. X., Yang Y., Fang X. H., Chen P. R., Chem. Commun., 2014, 50(94), 14724—14727 | 
| [41] | Devaraj N. K., Hilderbrand S., Upadhyay R., Mazitschek R., Weissleder R., Angew. Chem. Int. Ed., 2010, 49(16), 2869—2872 | 
| [42] | Wang L., Zong S. F., Wang Z. Y., Lu J., Chen C., Zhang R. H., Cui Y. P., Nanotechnology, 2018, 29(28), 285602 | 
| [43] | Vu T. Q., Lam W. Y., Hatch E. W., Lidke D. S., Cell Tissue Res., 2015, 360(1), 71—86 | 
| [44] | Liu H. F., Li Z. H., Sun Y. Q., Geng X., Hu Y. L., Meng H. M., Ge J., Qu L. B., Sci. Rep., 2018, 8, 1086 | 
| [45] | Li D. Y., Qin W., Xu B., Qian J., Tang B. Z., Adv. Mater., 2017, 29(43), 1703643 | 
| [46] | Haziza S., Mohan N., Loe-Mie Y., Lepagnol-Bestel A. M., Massou S., Adam M. P., Le X. L., Viard J., Plancon C., Daudin R., Koebel P., Dorard E., Rose C., Hsieh F. J., Wu C. C., Potier B., Herault Y., Sala C., Corvin A., Allinquant B., Chang H. C., Treussart F., Simonneau M., Nat. Nanotechnol., 2017, 12(4), 322—328 | 
| [47] | Zhang D., Wei L., Zhong M., Xiao L., Li H. W., Wang J., Chem. Sci., 2018, 9(23), 5260—5269 | 
| [48] | Wu Y. Y., Ruan H. F., Zhao R., Dong Z. Z., Li W. H., Tang X. J., Yuan J. H., Fang X. H., Adv. Opt. Mater., 2018, 6(19), 1800333 | 
| [49] | Jin D. Y., Xi P., Wang B. M., Zhang L., Enderlein J., van Oijen A. M., Nat. Methods, 2018, 15(6), 415—423 | 
| [50] | Jaqaman K., Loerke D., Mettlen M., Kuwata H., Grinstein S., Schmid S. L., Danuser G., Nat. Methods, 2008, 5(8), 695—702 | 
| [51] | Meijering E., Dzyubachyk O., Smal I., Methods Enzymol., 2012, 504, 183—200 | 
| [52] | Chenouard N., Smal I., de Chaumont F., Maska M., Sbalzarini I. F., Gong Y., Cardinale J., Carthel C., Coraluppi S., Winter M., Cohen A. R., Godinez W. J., Rohr K., Kalaidzidis Y., Liang L., Duncan J., Shen H., Xu Y., Magnusson K. E. G., Jalden J., Blau H. M., Paul-Gilloteaux P., Roudot P., Kervrann C., Waharte F., Tinevez J. Y., Shorte S. L., Willemse J., Celler K., van Wezel G. P., Dan H. W., Tsai Y. S., Ortiz de Solorzano C., Olivo-Marin J. C., Meijering E., Nat. Methods, 2014, 11(3), 281—289 | 
| [53] | Calebiro D., Rieken F., Wagner J., Sungkaworn T., Zabel U., Borzi A., Cocucci E., Zuern A., Lohse M. J., Proc. Natl. Acad. Sci. USA, 2013, 110(2), 743—748 | 
| [54] | Ulbrich M. H., Isacoff E. Y.,  Nat. Methods, 2007, 4(4), 319—321 doi: 10.1038/nmeth1024 URL | 
| [55] | Xu J. C., Qin G. G., Luo F., Wang L. N., Zhao R., Li N., Yuan J. H., Fang X. H.,  J. Am. Chem. Soc., 2019, 141(17), 6976—6985 doi: 10.1021/jacs.9b00688 URL | 
| [56] | Yuan J. H., He K. M., Cheng M., Yu J. Q., Fang X. H.,  Chem. Asian J., 2014, 9(8), 2303—2308 doi: 10.1002/asia.v9.8 URL | 
| [57] | Kusumi A., Sako Y., Yamamoto M.,  Biophys. J., 1993, 65(5), 2021—2040 doi: 10.1016/S0006-3495(93)81253-0 URL | 
| [58] | Andrec M., Levy R. M., Talaga D. S., J. Phys. Chem. A, 2003, 107(38), 7454—7464 | 
| [59] | Persson F., Linden M., Unoson C., Elf J.,  Nat. Methods, 2013, 10(3), 265—269 doi: 10.1038/nmeth.2367 URL | 
| [60] | Zhao R., Yuan J. H., Li N., Sun Y. H., Xia T., Fang X. H.,  Anal. Chem., 2019,91(21), 13390—13397 doi: 10.1021/acs.analchem.9b01005 URL | 
| [61] | Zhao R., Li N., Xu J. C., Li W. H., Fang X. H.,  Acta Biochim. Biophys. Sin., 2018, 50(1), 51—59 doi: 10.1093/abbs/gmx121 URL | 
| [62] | Mercer T. R., Neph S., Dinger M. E., Crawford J., Smith M. A., Shearwood A. M. J., Haugen E., Bracken C. P., Rackham O., Stamatoyannopoulos J. A., Filipovska A., Mattick J. S.,  Cell, 2011, 146(4), 645—658 doi: 10.1016/j.cell.2011.06.051 URL | 
| [63] | Zhang W., Yuan J. H., Yang Y., Xu L., Wang Q., Zuo W., Fang X. H., Chen Y. G.,  Cell Res., 2010, 20(11), 1216—1223 doi: 10.1038/cr.2010.105 URL | 
| [64] | Ma X. Y., Wang Q., Jiang Y. X., Xiao Z. Y., Fang X. H., Chen Y. G.,  Biochem. Biophys. Res. Commun., 2007, 356(1), 67—71 doi: 10.1016/j.bbrc.2007.02.080 URL | 
| [65] | Lu Z. X., Murray J. T., Luo W. J., Li H. L., Wu X. P., Xu H. X., Backer J. M., Chen Y. G.,  J. Biol. Chem., 2002, 277(33), 29363—29368 doi: 10.1074/jbc.M203495200 URL | 
| [66] | Penheiter S. G., Mitchell H., Garamszegi N., Edens M., Dore J. J. E., Leof E. B., Mol. Cell Biol., 2002, 22(13), 4750—4759 | 
| [67] | Li N., Yang Y., He K. M., Zhang F. Y., Zhao L. B., Zhou W., Yuan J. H., Liang W., Fang X. H.,  Sci. Rep., 2016, 6, 33469 doi: 10.1038/srep33469 URL | 
| [68] | Conner S. D., Schmid S. L.,  Nature, 2003, 422(6927), 37—44 doi: 10.1038/nature01451 URL | 
| [69] | He K. M., Yan X. H., Li N., Dang S., Xu L., Zhao B., Li Z. J., Lv Z. Z., Fang X. H., Zhang Y. Y., Chen Y. G., Cell Res., 2015, 25(6), 738—752 | 
| [70] | Zhang M. L., Zhang Z., He K., Wu J. M., Li N., Zhao R., Yuan J. H., Xiao H., Zhang Y. Y., Fang X. H.,  Anal. Chem., 2018, 90(7), 4282—4287 doi: 10.1021/acs.analchem.7b03448 URL | 
| [71] | Chung I., Akita R., Vandlen R., Toomre D., Schlessinger J., Mellman I.,  Nature, 2010, 464(7289), 783—787 doi: 10.1038/nature08827 URL | 
| [72] | Huang Y., Bharill S., Karandur D., Peterson S. M., Marita M., Shi X., Kaliszewski M. J., Smith A. W., Isacoff E. Y., Kuriyan J.,  eLife, 2016, 5, e14107 doi: 10.7554/eLife.14107 URL | 
| [73] | Xiao Z. Y., Ma X. Y., Jiang Y. X., Zhao Z. L., Lai B., Liao J. Y., Yue J. C., Fang X. H.,  J. Phys. Chem. B, 2008, 112(13), 4140—4145 doi: 10.1021/jp710302j URL | 
| [74] | Song D. K., Meng J. C., Cheng J., Fan Z., Chen P. Y., Ruan H. F., Tu Z. Y., Kang N., Li N., Xu Y., Wang X. B., Shi F., Mu L. B., Li T. F., Ren W. R., Lin X., Zhu J., Fang X., Amrein M. W., Wu W. H., Yan L. T., Lu J. H., Xia T., Shi Y., Nature Microbiology, 2019, 4(1), 97—111 | 
| [75] | Felce J. H., Davis S. J., Klenerman D., Trends Pharmacol. Sci., 2018, 39(2), 96—108 | 
| [76] | Black J. B., Premont R. T., Daaka Y., Semin. Cell Dev. Biol., 2016, 50, 95—104 | 
| [77] | Sungkaworn T., Jobin M. L., Burnecki K., Weron A., Lohse M. J., Calebiro D., Nature, 2017, 550(7677), 543—547 | 
| [78] | Chaplin R., Thach L., Hollenberg M. D., Cao Y., Little P. J., Kamato D.,  J. Cell Commun. Signal, 2017, 11(2), 117—125 doi: 10.1007/s12079-017-0375-9 URL | 
| [79] | Sun Y. H., Li N., Zhang M. L., Zhou W., Yuan J. H., Zhao R., Wu J. M., Li Z. J., Zhang Y. Y., Fang X. H.,  Chem. Commun., 2016, 52(44), 7086—7089 doi: 10.1039/C6CC00628K URL | 
| [80] | Zhang M. L., He K. M., Wu J. M., Li N., Yuan J. H., Zhou W., Ye Z., Li Z. J., Xiao H., Lv Z. Z., Zhang Y. Y., Fang X. H., Sci. China-Chem., 2017, 60(10), 1310—1317 | 
| [81] | Santos R., Ursu O., Gaulton A., Bento A. P., Donadi R. S., Bologa C. G., Karlsson A., Al-Lazikani B., Hersey A., Oprea T. I., Overington J. P.,  Nat. Rev. Drug Discov., 2017, 16(1), 19—34 doi: 10.1038/nrd.2016.230 URL | 
| [82] | Yanagawa M., Hiroshima M., Togashi Y., Abe M., Yamashita T., Shichida Y., Murata M., Ueda M., Sako Y., Sci. Signal., 2018, 11(548), eaao1917 | 
| [83] | He K. M., Fu Y. N., Zhang W., Yuan J. H., Li Z. J., Lv Z. Z., Zhang Y. Y., Fang X. H., Biochem. Biophys. Res. Commun., 2011, 407(2), 313—317 | 
| [84] | Yang Y., Xu Y. C., Xia T., Chen F. J., Zhang C. L., Liang W., Lai L. H., Fang X. H., Chem. Commun., 2011, 47(19), 5440—5442 | 
| [85] | Xiao H., Zhang J. S., Xu Z. H., Feng Y. N., Zhang M. L., Liu J. L., Chen R. F., Shen J., Wu J. M., Lu Z. Z., Fang X. H., Li J. Y., Zhang Y. Y., Sci. Rep., 2016, 6, 28597 | 
| [86] | Wisler J. W., DeWire S. M., Whalen E. J., Violin J. D., Drake M. T., Ahn S., Shenoy S. K., Lefkowitz R. J., Proc. Natl. Acad. Sci. USA, 2007, 104(42), 16657—16662 | 
| [1] | 武雪原, 应佚伦, 龙亿涛. Aerolysin单分子界面的构建及高选择性单分子检测[J]. 高等学校化学学报, 2019, 40(9): 1825. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||