高等学校化学学报 ›› 2011, Vol. 32 ›› Issue (2): 225.

• 研究论文 • 上一篇    下一篇

YF3:Eu3+纳米纤维/高分子复合纳米纤维的制备与表征

侯远, 董相廷, 王进贤, 刘桂霞, 李乐慧   

  1. 长春理工大学化学与环境工程学院, 长春 130022
  • 收稿日期:2010-07-23 修回日期:2010-12-13 出版日期:2010-02-10 发布日期:2011-02-23
  • 通讯作者: 董相廷 E-mail:dongxiangting888@yahoo.com.cn
  • 基金资助:

     国家自然科学基金项目(批准号:   50972020), 吉林省科技发展计划重大项目(批准号:   20070402,   20060504), 教育部科学技术研究重点项目(批准号:   207026), 长春市科技计划项目(批准号:   2007045)和吉林省教育厅“十一五”科学技术研究项目(批准号:   200745, 2005109)资助.

Preparation and Characterization of YF3:Eu3+ Nanofibers/Polymer Composite Nanofibers

HOU Yuan, DONG Xiang-Ting*, WANG Jin-Xian, LIU Gui-Xia, LI Le-Hui   

  1. School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022,   China
  • Received:2010-07-23 Revised:2010-12-13 Online:2010-02-10 Published:2011-02-23
  • Contact: DONG Xiang-Ting E-mail:dongxiangting888@yahoo.com.cn
  • Supported by:

     国家自然科学基金项目(批准号:   50972020), 吉林省科技发展计划重大项目(批准号:   20070402,   20060504), 教育部科学技术研究重点项目(批准号:   207026), 长春市科技计划项目(批准号:   2007045)和吉林省教育厅“十一五”科学技术研究项目(批准号:   200745, 2005109)资助.

摘要: 采用静电纺丝技术制备了Y2O3:Eu3+纳米纤维,使用NH4HF2为氟化剂,经双坩埚法氟化和脱氨后得到YF3:Eu3+纳米纤维,再采用静电纺丝技术制备了YF3:Eu3+纳米纤维/PVP复合纳米纤维. XRD分析表明,立方相的Y2O3:Eu3+氟化后,得到了正交相的YF3:Eu3+纳米纤维,空间群为Pnma;YF3:Eu3+纳米纤维/PVP复合纳米纤维具有明显的YF3:Eu3+的衍射峰. SEM分析表明,YF3:Eu3+纳米纤维与YF3:Eu3+纳米纤维/PVP复合纳米纤维的直径分别为91±11 nm、319±43 nm,表面光滑. 用Shapiro-Wilk方法检验,纤维直径属于正态分布. 荧光光谱分析表明,YF3:Eu3+纳米纤维和YF3:Eu3+纳米纤维/PVP复合纳米纤维的最强发射峰均位于588 nm和595 nm,属于Eu3+的5D0→7F1跃迁,表明Eu3+占据YF3基质中Y3+晶格点的C2对称格位. PVP对YF3:Eu3+发光峰位没有影响,但发光强度降低;YF3:Eu3+的含量与YF3:Eu3+纳米纤维/PVP复合纳米纤维的发光强度成线性关系.

关键词: 氟化钇, 静电纺丝, 纳米纤维, 复合纤维, 发光材料

Abstract: Y2O3:Eu3+ nanofibers were prepared by electrospinning, and then YF3:Eu3+ nanofibers were obtained by fluorination of the relevant Y2O3:Eu3+ nanofibers followed by deammoniation process via double-crucible method using NH4HF2 as fluorinating agent. YF3:Eu3+ nanofibers/PVP composite nanofibers were fabricated using electrospinning technique again. XRD analysis indicated that orthorhombic YF3:Eu3+ nanofibers with space group Pnma were acquired through fluorination of the cubic Y2O3:Eu3+ nanofibers. YF3:Eu3+ nanofibers/PVP composite nanofibers possess obvious diffraction peaks of YF3:Eu3+. SEM revealed that diameters of YF3:Eu3+ nanofibers and YF3:Eu3+ nanofibers/ PVP composite nanofibers are 91±11 nm and 319±43 nm, respectively, and the surface of these fibers are smooth. The diameters of fibers analyzed by Shapiro-Wilk method are normal distribution. Fluorescence spectra analysis manifested that YF3:Eu3+ nanofibers and YF3:Eu3+ nanofibers/ PVP composite nanofibers emit the strongest emission peaks at 588 nm and 595 nm originating from the transition 5D0→7F1 of Eu3+, which suggests Eu3+ ion in YF3 crystal is at a site of C2 symmetry. PVP has no effects on the wavelength of the emission peaks of YF3:Eu3+, but the luminescent intensity is decreased. Relationship between YF3:Eu3+ contents and luminescence intensity for YF3:Eu3+ nanofibers/PVP composite nanofibers presents linearity.

Key words: Yttrium trifluoride, Electrospinning, Nanofibers, Composite fibers, Phosphors

TrendMD: