高等学校化学学报

• 综合评述 • 上一篇    下一篇

基于机器学习的负热膨胀研究进展

于坤杰1,张智1,高其龙2   

  1. 1. 郑州大学电气与信息工程学院 2. 郑州大学物理学院
  • 收稿日期:2025-12-12 修回日期:2026-01-16 网络首发:2026-01-17 发布日期:2026-01-17
  • 通讯作者: 高其龙

Research Progress on Negative Thermal Expansion Based on Machine Learning

YU Kunjie1,ZHANG Zhi1,GAO Qilong2   

  1. 1.School of Electrical and Information Engineering, Zhengzhou University 2.School of Physics, Zhengzhou University

  • Received:2025-12-12 Revised:2026-01-16 Online First:2026-01-17 Published:2026-01-17
  • Contact: Qilong Gao

摘要: 在材料基因工程的背景下,基于数据驱动的机器学习技术作为一种强大的新型工具,在材料热膨胀性能研究领域受到广泛关注。机器学习能够绕过复杂的实验过程与理论计算,通过建立描述符与热膨胀性能间的关联,以较低成本快捷地实现材料热膨胀性能的预测,有效弥补了传统实验试错法和基于密度泛函理论的方法在时间成本高、效率低等方面的不足。本文简述了机器学习的基本流程与方法,并重点阐述其在材料热膨胀性能研究中的应用进展。传统机器学习领域已实现从热膨胀系数单目标预测,到引入特征重要性分析解析机制、结合特征选择优化模型,再到多性能关联多目标预测的逐步深入。在机器学习原子间势方面,研究通过构建原子尺度势能函数驱动分子动力学模拟,进而揭示热膨胀行为的微观机制。这些应用加速了负热膨胀材料设计筛选,深化了机理理解。最后,分析了机器学习在材料热膨胀性能研究中亟待解决的问题,并据此提出了未来的研究方向与发展趋势。

关键词: 机器学习, 热膨胀预测, 数据驱动, 负热膨胀材料

Abstract: Against the backdrop of materials genetic engineering, data-driven machine learning (ML) techniques, as a powerful new tool, have garnered widespread attention in the field of research on materials' thermal expansion properties. ML can bypass complex experimental processes and theoretical calculations; by establishing correlations between descriptors and thermal expansion properties, it enables rapid prediction of materials' thermal expansion properties at relatively low cost, effectively compensating for the shortcomings of traditional experimental trial-and-error methods and density functional theory (DFT)-based approaches, such as high time costs and low efficiency. This paper outlines the basic processes and methods of machine learning, and focuses on elaborating its application progress in the research on the thermal expansion properties of materials. The field of traditional machine learning has achieved a gradual deepening, starting from the single-target prediction of the coefficient of thermal expansion, moving to the introduction of an analytical mechanism for feature importance analysis and the combination of feature selection to optimize models, and then advancing to the multi-target prediction associated with multiple properties. In the aspect of machine learning-based interatomic potentials, studies drive molecular dynamics simulations by constructing atomic-scale potential energy functions, thereby revealing the microscopic mechanism of thermal expansion behavior.These applications have accelerated the design and screening of negative thermal expansion materials and deepened the understanding of relevant mechanisms.Finally, the paper analyzes the urgent issues to be resolved in the application of ML to the research on materials' thermal expansion properties, and proposes future research directions and development trends accordingly.

Key words: Machine learning, Thermal expansion prediction, Data-driven, Negative thermal expansion materials

中图分类号: 

TrendMD: