高等学校化学学报 ›› 2026, Vol. 47 ›› Issue (1): 20250212.doi: 10.7503/cjcu20250212
屈开儒1,2, 郭绿洲3, 王文彬4, 颜徐州4, 曹学正3, 杨振忠1(
)
收稿日期:2025-07-30
出版日期:2026-01-10
发布日期:2025-09-16
通讯作者:
杨振忠
E-mail:yangzhenzhong@tsinghua.edu.cn
作者简介:第一联系人:共同第一作者.
QU Kairu1,2, GUO Lyuzhou3, WANG Wenbin4, YAN Xuzhou4, CAO Xuezheng3, YANG Zhenzhong1(
)
Received:2025-07-30
Online:2026-01-10
Published:2025-09-16
Contact:
YANG Zhenzhong
E-mail:yangzhenzhong@tsinghua.edu.cn
Supported by:摘要:
聚合物通常含有不同组成与数目的端基,其物理化学性质与此密切相关. 环状聚合物不含端基, 展现出独特的物理化学性能, 如更小的流体力学尺寸和延缓的降解速度, 引起人们广泛关注. 发展高效的合成方法, 实现环状聚合物的可规模化制备及组分与微结构的精准调控是高分子科学的前沿研究方向. 本文以动态单链纳米颗粒内环化方法可规模制备环状聚合物为例, 展示其面临的关键问题. 以小尺寸环状有机结构化合物为例, 展示了其在若干复合材料中的典型特性. 未来将更加聚焦发展高效合成方法, 精准控制环状聚合物尺寸、 组成及序列结构, 为其规模制备和商业化及高性能复合材料的发展提供新范式.
中图分类号:
TrendMD:
屈开儒, 郭绿洲, 王文彬, 颜徐州, 曹学正, 杨振忠. 环状聚合物的可规模化制备及功能化复合材料研究进展. 高等学校化学学报, 2026, 47(1): 20250212.
QU Kairu, GUO Lyuzhou, WANG Wenbin, YAN Xuzhou, CAO Xuezheng, YANG Zhenzhong. Recent Progresses in Synthesis of Cyclic Polymers in Large-scale and Some Functionalized Composites. Chem. J. Chinese Universities, 2026, 47(1): 20250212.
Fig.1 Schematic ring closure method to prepare cyclic polymers via three representative strategies(A) and the ring⁃expansion strategy(B)[28](A) A2+B2 bimolecular coupling, A2 unimolecular self-cyclization, A-B unimolecular self-cyclization.Copyright 2009, the Royal Society of Chemistry.
Fig.3 Schemes of the reaction and equipment to synthesize cyclic polymers by ATRP⁃CuAAC cyclization via the evaporation/condensation/extraction/inflow process[47]
Fig.5 Electrostatics⁃mediated ring closure at the dynamic SCNP toward large⁃scale synthesis of pure polymer rings(A) and TEM images of the ring(B) and linear(C) polymer upon the chain extension[58]
Fig.7 The intrinsic viscosity([η], A)[67] and rouse model(solid lines) predicating storage modulus(G′) of polystyrene rings, and the experimental data(open circles) at a reference temperature of 160 ℃(B)[68](A) Copyright 2017, American Chemical Society; (B) Copyright 2015, American Chemical Society.
Fig.8 Schematic illustration of the rhombic metallacycle crosslinked polymer network(CP⁃nR) formed using 60° Pt(II) acceptors(A) and the hexagonal metallacycle crosslinked polymer network(CP⁃nH) obtained with 120° Pt(II) acceptors(B)[89], schematic formation of CCN(C) and stress⁃strain profiles of LCN and CCN at a deformation rate of 100 mm/min(D)[90]
Fig.10 Molecular architecture and dynamic behavior of the macromolecular [2]rotaxane crosslinker, and the mechanical performances of RCP and CCP(A)[96] and mechanical interlocking network with a densely rotaxanated backbone(B)[97](A) Copyright 2015, American Chemical Society; (B) Copyright 2022, Springer Nature.
Fig.11 Synthesis of the interlocked catenated poly(ε⁃caprolactone)(A), wide⁃angle X⁃ray scattering(WAXS) patterns of Lin⁃PCL99 and De⁃Caten⁃PCL88 crystals(B)[106], DMA spectra of the PC copolymer containing 20%(mass fraction) of [2]catenane(C)[107], synthesis of the catenane⁃based mechanically linked polymers(D) and Pd⁃removal of catenanes to enhance the polymer chain mobility, reduce Tg and increase crystallization rate(E)[108], schematic Olympic gel(F) and dynamic light⁃scattering microrheological behaviors of the enzyme⁃active gel(G) and permanent enzyme⁃inactive gel(H)[111]
| [1] | Kricheldorf H. R., J. Polym. Sci., Part A: Polym. Chem., 2010, 48(2), 251—284 |
| [2] | Hadziioannou G., Cotts P. M., ten Brinke G., Han G., Kovacs A., Macromolecules, 1987, 20(3), 493—497 |
| [3] | Kapnistos M., Lang M., Vlassopoulos D., Pyckhout-Hintzen W., Richter D., Cho D., Chang T., Rubinstein M., Nat. Mater., 2008, 7(12), 997—1002 |
| [4] | Poelma J. E., Ono K., Miyajima D., Aida T., Satoh K., Hawker J., ACS Nano, 2012, 6(12), 10845—10854 |
| [5] | Córdova M. E., Lorenzo A. T., Müller A. J., Hoskins N., Grayson M., Macromolecules, 2011, 44(7), 1742—1746 |
| [6] | Zaldua N., Liénard R., Josse T., Zubitur M., Mugica A., Iturrospe A., Arbe A., de Winter J., Coulembier O., Müller J., Macromolecules, 2018, 51(5), 1718—1732 |
| [7] | Romio M., Trachsel L., Morgese G., Ramakrishna N., Spencer D., Benetti M., ACS Macro Lett., 2020, 9(7), 1024—1033 |
| [8] | Golba B., Benetti E. M., de Geest B. G., Biomaterials, 2021, 267, 120468 |
| [9] | Xu X., Zhou N., Zhu J., Tu Y., Zhang Z., Cheng Z., Zhu X., Macromol. Rapid Commun., 2010, 31(20), 1791—1797 |
| [10] | Morgese G., Cavalli E., Rosenboom J., Zenobi⁃Wong M., Benetti M., Angew. Chem. Int. Ed., 2018, 57(6), 1621—1626 |
| [11] | Zhang K., Lackey M. A., Cui J., Tew N., J. Am. Chem. Soc., 2011, 133(11), 4140—4148 |
| [12] | Aboudzadeh M. A., Iturrospe A., Arbe A., Grzelczak M., Barroso⁃Bujans F., ACS Macro Lett., 2020, 9(11), 1604—1610 |
| [13] | Elardo M. J., Levenson A. M., Kitos V. A. P., Pomfret M. N., Golder M. R., Chem. Sci., 2024, 15(41), 17193—17199 |
| [14] | Liu C., Cheu C., Barker J. G., Yang L., Nieh M., J. Colloid Interf. Sci., 2023, 630, 629—637 |
| [15] | Martínez C. R., Pérez J. M., Arrabal⁃Campos F. M., Batuecas M., Ortuño M. A., Fernández I., Polym. Chem., 2021, 12(28), 4083—4092 |
| [16] | Huo L., Qu K., Yang Z., Jia D., Chin. J. Polym. Sci., 2025, 43, 399—405 |
| [17] | Guo X., Liu J. Y., Yang X. Y., Jin Z. L., Noritatsu T., Chem. Res. Chinese Universities, 2025, 41(4), 893—902 |
| [18] | Gao J. F., Lin X., Jiang B. W., Tang S. P., Zhang H. Y., Chen F. T., Jin Z. L., Li Y. J., Noritatsu T., Chem. Res. Chinese Universities, 2025, 41(4), 868—879 |
| [19] | Yan S. H., Wang L. J., Shan P. N., Lin X., Shi W. L., Chem. Res. Chinese Universities, 2025, 41(4), 859—867 |
| [20] | Guo D., Huang G. H., Bai H. J., Wang Y. L., Cao G. Q., Liu B., Hu S. L., Chem. J. Chinese Universities, 2025, 46(6), 20250091 |
| [21] | Liu S. Y., Su W., Zhou Z. Y., Yang Z. Y., Pei H. F., He Z. R., Wang N., Yue L., Chem. J. Chinese Universities, 2024, 45(11), 20240382 |
| [22] | Gao R., Xu L., Li S. Liu N., Chen Z., Wu Z., Chem. Eur. J., 2023, 29(41), e202300916 |
| [23] | Ochs J., Pagnacco C., Barroso⁃Bujans F., Prog. Polym. Sci., 2022, 134, 101606 |
| [24] | Kricheldorf H., Polycondensation: History and New Results, Springer, Berlin, Heidelberg, 2014 |
| [25] | Haque F., Grayson S., Nat. Chem., 2020, 12(5), 433—444 |
| [26] | Hu J., Liu S., Sci. China Chem., 2017, 60(9), 1153—1161 |
| [27] | Shao Y., Yang Z., Prog. Polym. Sci., 2022, 133, 101593 |
| [28] | Laurent B., Grayson S., Chem. Soc. Rev., 2009, 38, 2202—2213 |
| [29] | Zhu Y., Hosmane N., Chem. Open, 2015, 4(4), 408—417 |
| [30] | Chang Y., Waymouth R., J. Polym. Sci. Part A: Polym. Chem., 2017, 55(18), 2892—2902 |
| [31] | Ouchi M., Kammiyada H., Sawamoto M., Polym. Chem., 2017, 8(34), 4970—4977 |
| [32] | Jia Z., Monteiro M., J. Polym. Sci. A Polym. Chem., 2012, 50(11), 2085—2097 |
| [33] | Kricheldorf H., Macromol. Symp., 2003, 199(1), 15—22 |
| [34] | Jacobson H., Stockmayer W., J. Chem. Phys., 1950, 18(12), 1600—1606 |
| [35] | Josse T., DeWinter J., Gerbaux P., Coulembier O., Angew. Chem. Int. Ed., 2016, 55(45), 13944—13958 |
| [36] | Hild G., Kohler A., Rempp P., Eur. Polym. J., 1980, 16(6), 525—527 |
| [37] | Boutillier J., Lepoittevin B., Favier C., Masure M., Hémery P., Sigwalt P., Eur. Polym. J., 2002, 38(2), 243—250 |
| [38] | Yin R., Hogen⁃Esch T., Macromolecules, 1993, 26(25), 6952—6957 |
| [39] | Iatrou H., Hadjichristidis N., Meier G., Frielinghaus H., Monkenbusch M., Macromolecules, 2002, 35(14), 5426—5437 |
| [40] | Madani A., Favier J., Hémery P., Sigwalt P., Polym. Int., 1992, 27(4), 353—357 |
| [41] | Polymeropoulos G., Zapsas G., Ntetsikas K., Bilalis P., Gnanou Y., Hadjichristidis N., Macromolecules, 2017, 50(4), 1253—1290 |
| [42] | Blackburn S., Tillman E., Macromol. Chem. Phys., 2015, 216(12), 1282—1290 |
| [43] | Konomoto T., Nakamura K., Yamamoto T., Tezuka Y., Macromolecules, 2019, 52(23), 9208—9219 |
| [44] | Sharma S., Ntetsikas K., Ladelta V., Bhaumik S., Hadjichristidis N., Polym. Chem., 2021, 12(45), 6616—6625 |
| [45] | Zhang L., Wu Y., Li S., Macromolecules, 2020, 53(19), 8621—8630 |
| [46] | Qu L., Sun P., Wu Y., Macromol. Rapid Commun., 2017, 38(15), 1700121 |
| [47] | Zhu X., Zhou N., Zhu J., Zhang Z., Zhang W., Cheng Z., Tu Y., Zhu X., Macromol. Chem. Phys., 2013, 214(10), 1107—1113 |
| [48] | Sun P., Liu J., Zhang Z., Zhang K., Polym. Chem., 2016, 7(12), 2239—2244 |
| [49] | Baeten E., Rubens M., Wuest K., Barner⁃Kowollik C., Junkers T., React. Chem. Eng., 2017, 2(6), 826—829 |
| [50] | Chen L., Wang X., Hou R., Lu H., He Z., Zhou X., Zhang W., Wang X., Polym. Chem., 2023, 14(40), 4659—4670 |
| [51] | Shen H., Wang G., Polym. Chem., 2017, 8(36), 5554—5560 |
| [52] | Huettner N., Frisch H., Dargaville T., Eur. Polym. J., 2024, 203, 112659 |
| [53] | Ge Z., Zhou Y., Xu J., Liu H., Chen D., Liu S., J. Am. Chem. Soc., 2009, 131(5), 1628—1629 |
| [54] | Liu Y., Jih J., Dai X., Bi G., Zhou Z., Nature, 2019, 570(7760), 257—261 |
| [55] | Zhang H., Zha H., Liu C., Hong C., Sci. China Chem., 2022, 65(12), 2558—2566 |
| [56] | Zha H., Wang Z., Cheng L., Liu C., Hong C., Macromolecules, 2024, 57(24), 11322—11330 |
| [57] | Zha H., Wang Z., Liu C., Hong C., Chin. Chem. Lett., 2024, 35(2), 108956 |
| [58] | Qu K., Du L., Zhou S., Huo L., Gu A., Lu D., Chen C., Di J., Yang Z., Macromolecules, 2025, 58(8), 4131—4137 |
| [59] | Golba B., Benetti E. M., de Geest B. G., Biomaterials, 2021, 267, 120468 |
| [60] | Peng L., Liu S., Feng A., Yuan J., Mol. Pharm., 2017, 14(8), 2475—2486 |
| [61] | Park W. I., Kim Y., Jeong J. W., Kim K., Yoo J. K., Hur Y. H., Kim J. M., Thomas E. L., Alexander⁃Katz A., Jung Y. S., Sci. Rep., 2013, 3(1), 3190 |
| [62] | Valero J., Pal N., Dhakal S., Walter N. G., Famulok M., Nat. Nanotechnol., 2018, 13(6), 496—503 |
| [63] | Chen C., Weil T., Nanoscale Horiz., 2022, 7(10), 1121—1135 |
| [64] | Kammiyada H., Ouchi M., Sawamoto M., Macromolecules, 2017, 50(3), 841—848 |
| [65] | Bielawski C. W., Benitez D., Grubbs R. H., Science, 2002, 297(5589), 2041—2044 |
| [66] | Halverson J. D., Grest G. S., Grosberg A. Y., Kremer K., Phys. Rev. Lett., 2012, 108(3), 038301 |
| [67] | Jeong Y., Jin Y., Chang T., Uhlik F., Roovers J., Macromolecules, 2017, 50(19), 7770—7776 |
| [68] | Doi Y., Matsubara K., Ohta Y., Nakano T., Kawaguchi D., Takahashi Y., Takano A., Matsushita Y., Macromolecules, 2015, 48(9), 3140—3147 |
| [69] | Doi Y., Matsumoto A., Inoue T., Iwamoto T., Takano A., Matsushita Y., Takahashi Y., Watanabe H., Rheol. Acta, 2017, 56, 567—581 |
| [70] | Doi Y., Nihon Reoroji Gakk., 2022, 50(1), 57—62 |
| [71] | Tsalikis D. G., Mavrantzas V. G., Vlassopoulos D., ACS Macro Lett., 2016, 5(6), 755—760 |
| [72] | Parisi D., Costanzo S., Jeong Y., Ahn J., Chang T., Vlassopoulos D., Halverson J. D., Kremer K., Ge T., Rubinstein M., Grest G. S., Srinin W., Grosberg A. Y., Macromolecules, 2021, 54(6), 2811—2827 |
| [73] | Stano R., Smrek J., Likos C. N., ACS Nano, 2023, 17(21), 21369—21382 |
| [74] | Obukhov S. P., Rubinstein M., Duke T., Phys. Rev. Lett., 1994, 73(9), 1263 |
| [75] | Kruteva M., Monkenbusch M., Allgaier J., Pyckhout⁃Hintzen W., Porcar L., Richter D., Macromolecules, 2023, 56(13), 4835—4844 |
| [76] | Yan Z., Wang W., Macromolecules, 2024, 57(9), 4236—4245 |
| [77] | Ge T., Panyukov S., Rubinstein M., Macromolecules, 2016, 49(2), 708—722 |
| [78] | O’Connor T. C., Ge T., Grest G. S., J. Rheol., 2022, 66(1), 49—65 |
| [79] | O’Connor T. C., Ge T., Rubinstein M., Grest G. S., Phys. Rev. Lett., 2020, 124(2), 027801 |
| [80] | Goto S., Kim K., Matubayasi N., J. Chem. Phys., 2021, 155(12), 57—62 |
| [81] | Li Y., Wu Z., Zong Z., Cao X., ACS Macro Lett., 2023, 12(2), 183—188 |
| [82] | Guo L., Wu C., Merlitz H., Chen J., Yang Z., Forest M. G., Wu C., Cao X., Macromolecules, 2025, 58(12), 6149—6157 |
| [83] | Chen D., Panyukov S., Sapir L., Rubinstein M., ACS Macro Lett., 2023, 12(3), 362—368 |
| [84] | Xiong Z., Yu W., Chin. J. Polym. Sci., 2023, 41(9), 1410—1424 |
| [85] | Minatti E., Viville P., Borsali R., Schappacher M., Deffieux A., Lazzaroni R., Macromolecules, 2003, 36(11), 4125—4133 |
| [86] | Honda S., Yamamoto T., Tezuka Y., J. Am. Chem. Soc., 2010, 132(30), 10251—10253 |
| [87] | Poelma J. E., Ono K., Miyajima D., Aida T., Satoh K., Hawker C. J., ACS Nano, 2012, 6(12), 10845—10854 |
| [88] | Zhao D., Yan X., Chem. Eur. J., 2025, 31(21), e202404780 |
| [89] | He L., Jiang Y., Wei J., Zhang Z., Hong T., Ren Z., Huang J., Huang F., Stang P. J., Li S., Nat. Commun., 2024, 15(1), 3050 |
| [90] | Zhao D., Zhang Z., Wei Z., Zhao J., Li T., Yan X., Angew. Chem. Int. Ed., 2024, 63(19), e202402394 |
| [91] | Xia D., Wang P., Ji X., Khashab N. M., Sessler J. L., Huang F., Chem. Rev., 2020, 120(13), 6070—6123 |
| [92] | Hart L. F., Hertzog J. E., Rauscher P. M., Rawe B. W., Tranquilli M. M., Rowan S. J., Nat. Rev. Mater., 2021, 6(6), 508—530 |
| [93] | Wang W., Bai R., Wang C., Yang L., Cheng L., Zhang Z., Yu W., Yan X., Angew. Chem. Int. Ed., 2025, 64(30), e202507192 |
| [94] | Huang Z., Chen X., O’Neill S. J. K., Wu G., Whitaker D. J., Li J., McCune J. A., Scherman O. A., Nat. Mater., 2022, 21(1), 103—109 |
| [95] | Wang L., Cheng L., Li G., Liu K., Zhang Z., Li, P., Dong S., Yu W., Huang F., Yan X., J. Am. Chem. Soc., 2020, 142(4), 2051—2058 |
| [96] | Sawada J., Aoki D., Uchida S., Otsuka H., Takata T., ACS Macro Lett., 2015, 4(5), 598—601 |
| [97] | Yang X., Cheng L., Zhang Z., Zhao J., Bai R., Guo Z., Yu W., Yan X., Nat. Commun., 2022, 13(1), 6654 |
| [98] | Okumura Y., Ito K., Adv. Mater., 2001, 13(7), 485—487 |
| [99] | Kato K., Yasuda T., Ito K., Macromolecules, 2013, 46(1), 310—316 |
| [100] | Mayumi K., Nagao M., Endo H., Osaka N., Shibayama M., Ito K., Phys. Rev. B, 2009, 404(17), 2600—2602 |
| [101] | Ito K., Polym. J., 2012, 44(1), 38—41 |
| [102] | Ebe M., Soga A., Fujiwara K., Ree B. J., Marubayashi H., Hagita K., Imasaki A., Baba M., Yamamoto T., Tajima K., Deguchi T., Jinnai H., Isono T., Satoh T., Angew. Chem. Int. Ed., 2023, 62(35), e202304493 |
| [103] | Hagita K., Murashima T., Polymer, 2021, 223, 123705 |
| [104] | Hagita K., Murashima T., Ebe M., Isono T., Satoh T., Polymer, 2022, 245, 124683 |
| [105] | Bai R., Zhang Z., Di W., Yang X., Zhao J., Ouyang H., Liu G., Zhang X., Cheng L., Cao Y., Yu W., Yan X., J. Am. Chem. Soc., 2023, 145(16), 9011—9020 |
| [106] | Cao P. F., Mangadlao J. D., de Leon A., Su Z., Advincula R. C., Macromolecules, 2015, 48(12), 3825—3833 |
| [107] | Fustin C. A., Bailly C., Clarkson G. J., de Groote P., Galow T. H., Leigh D. A., Robertson D., Slawin A. M. Z., Wong J. K. Y., J. Am. Chem. Soc., 2003, 125(8), 2200—2207 |
| [108] | Ahamed B. N., Van Velthem P., Robeyns K., Fustin C. A., ACS Macro Lett., 2017, 6(4), 468—472 |
| [109] | Xiong X., Xue M., Xue L., Zhang L., Zhang Z., Chen J., Zhang G., Liu H., Cui J., Angew. Chem. Int. Ed., 2025, 64(22), e202425034 |
| [110] | Renger H. C., Wolstenholme D. R., J. Cell Biol., 1972, 54(2), 346—364 |
| [111] | Krajina B. A., Zhu A., Heilshorn S. C., Spakowitz A. J., Phys. Rev. Lett., 2018, 121(14), 148001 |
| [112] | Wang J., O’Connor T. C., Grest G. S., Ge T., Phys. Rev. Lett., 2022, 128(23), 237801 |
| [113] | Mo J., Wang J., Wang Z., Lu Y., An L., Macromolecules, 2022, 55(5), 1505—1514 |
| [114] | Bonato A., Marenduzzo D., Orlandini E., Phys. Rev. Lett., 2025, 134(18), 188203 |
| [115] | Hagita K., Murashima T., Macromolecules, 2021, 54(17), 8043—8051 |
| [116] | Chiarantoni P., Micheletti C., Macromolecules, 2022, 55(11), 4523—4532 |
| [117] | Parisi D., Ahn J., Chang T., Vlassopoulos D., Rubinstein M., Macromolecules, 2020, 53(5), 1685—1693 |
| [1] | 孙薇, 李福森, 韩存鑫, 邓月, 魏文林, 李冰, 时东方. 光催化法制备GO@Au纳米复合材料及其抗菌性能[J]. 高等学校化学学报, 2025, 46(3): 20240461. |
| [2] | 解卓学, 寇艳, 史全, 田颖. 硅胶废料复合相变材料的合成及控温性能[J]. 高等学校化学学报, 2025, 46(2): 20240372. |
| [3] | 鲁义东, 霍志鹏, 张宏, 钟国强. 微米板Sm2O3填料增强HDPE复合材料的制备及中子和伽马辐射屏蔽性能[J]. 高等学校化学学报, 2024, 45(9): 20240142. |
| [4] | 李世宣, 蒙化, 尹学虎, 易锦飞, 马丽红, 张艳丽, 王红斌, 杨文荣, 庞鹏飞. 基于石墨烯/金纳米粒子/碳化钛复合材料构建双室酶生物燃料电池自供能葡萄糖生物传感器[J]. 高等学校化学学报, 2024, 45(12): 20240301. |
| [5] | 李浩, 杨晨熠, 李佳尧, 张少青, 侯剑辉. 基于受体1-受体2型聚合物给体的高效有机太阳能电池[J]. 高等学校化学学报, 2023, 44(9): 20230157. |
| [6] | 李伟, 陈宸, 刘丹, 王涛. 非富勒烯电子受体多尺度分子聚集体[J]. 高等学校化学学报, 2023, 44(9): 20230160. |
| [7] | 钱浙濠, 王硕, 宗鑫, 蔡磊, 贺爱华. TBIR对天然橡胶纳米复合材料结构和性能的调控[J]. 高等学校化学学报, 2023, 44(8): 20230023. |
| [8] | 贺汝涵, 黎浩, 韩方, 陈奥渊, 麦立强, 周亮. 锂离子电池硅基负极界面工程的研究进展[J]. 高等学校化学学报, 2023, 44(5): 20220748. |
| [9] | 张子文, 董明阳, 储瑶, 李蔚, 蔡以兵. 纳米银负载三聚氰胺泡沫基相变复合材料的一步法制备及结构与性能[J]. 高等学校化学学报, 2023, 44(12): 20230222. |
| [10] | 骆鑫妍, 贾若男, 向勇, 张晓琨. 可拉伸聚合物基复合固体电解质研究进展[J]. 高等学校化学学报, 2022, 43(8): 20220149. |
| [11] | 赵盛, 霍志鹏, 钟国强, 张宏, 胡立群. 改性钆/硼/聚乙烯纳米复合材料的制备及对中子和伽马射线的屏蔽性能[J]. 高等学校化学学报, 2022, 43(6): 20220039. |
| [12] | 于鹏东, 关兴华, 王冬冬, 辛志荣, 石强, 殷敬华. 新型光、 热双响应形状记忆聚合物的制备与性能[J]. 高等学校化学学报, 2022, 43(6): 20220085. |
| [13] | 赵君禹, 王春博, 王成杨, 张克, 丛冰, 杨岚, 赵晓刚, 陈春海. 导热膨胀石墨/聚醚酰亚胺复合材料的制备与性能[J]. 高等学校化学学报, 2022, 43(4): 20210800. |
| [14] | 储瑶, 王烁, 张子诺, 王艺博, 蔡以兵. 铜粒子负载泡沫基相变复合材料的制备与性能[J]. 高等学校化学学报, 2022, 43(2): 20210619. |
| [15] | 张咪, 田亚锋, 高克利, 侯华, 王宝山. 三氟甲基磺酰氟绝缘介质理化特性的分子动力学模拟[J]. 高等学校化学学报, 2022, 43(11): 20220424. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||