高等学校化学学报 ›› 2024, Vol. 45 ›› Issue (2): 20230421.doi: 10.7503/cjcu20230421

• 物理化学 • 上一篇    下一篇

液态金属催化裂解甲烷制氢动力学研究

廖加术1, 刘建星1, 王思蜀2, 陈波1, 陈建军1, 韦建军2, 叶宗标1, 芶富均1()   

  1. 1.四川大学原子核科学技术研究所
    2.原子与分子物理研究所,成都 610064
  • 收稿日期:2023-09-22 出版日期:2024-02-10 发布日期:2023-11-17
  • 通讯作者: 芶富均 E-mail:gfujun@scu.edu.cn

Kinetics of Methane Decomposition in the Catalytic Liquid Metal Reactor for Hydrogen Production

LIAO Jiashu1, LIU Jianxing1, WANG Sishu2, CHEN Bo1, CHEN Jianjun1, WEI Jianjun2, YE Zongbiao1, GOU Fujun1()   

  1. 1.Institute of Nuclear Science and Technology
    2.Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610064,China
  • Received:2023-09-22 Online:2024-02-10 Published:2023-11-17
  • Contact: GOU Fujun E-mail:gfujun@scu.edu.cn

摘要:

液态金属催化甲烷热解是一种高效生产氢气且无二氧化碳排放的新兴技术. 本文开发了一个液态金属裂解反应器催化甲烷热解的数值模型, 在实验室自主搭建的液态金属制氢平台上得到的实验数据与模型预测结果吻合良好. 该模型是基于甲烷在气液界面发生的催化热解、 气泡内部发生的非催化热解过程和气泡上升过程中的流动行为, 耦合了催化和非催化反应动力学和流体力学所建立的. 使用气体体积流速、 压力、 气体成分、 温度和液态金属性质(密度、 黏度和表面张力)预测气泡尺寸和熔体中的气含率. 该模型较好地预测了液态铜铋合金(Cu0.45Bi0.55)催化甲烷热解实验中不同温度、 不同甲烷进气流量和液态金属高度下的甲烷转化率, 得到了催化甲烷热解过程中的气含率、 表观气体速率和压力沿液态金属高度的分布. 实验数据与模型预测结果的高度吻合证明了模型的可靠性, 该模型未来将有助于反应器优化和氢产率提高.

关键词: 液态金属, 反应动力学, 流体力学, 催化甲烷热解

Abstract:

Liquid metal catalytic pyrolysis of methane is an emerging technology for the efficient production of hydrogen without CO2 emissions. In this paper, a numerical model for catalytic methane pyrolysis within a liquid metal cracking reactor was introduced. Experimental data from our in-house liquid metal hydrogen production platform align closely with the model's predictions, which demonstrated a strong correlation between experimental findings and model outcomes. The model was constructed by integrating the catalytic thermal decomposition of methane at the gas-liquid interface, the non-catalytic pyrolysis processes within bubbles, and the fluid dynamics during bubble ascent. This framework harmoniously combines the kinetics of catalytic and non-catalytic reactions with fluid dynamics. Our approach utilizes parameters such as gas volumetric, flow rate, pressure, gas composition temperature and the inherent properties of the liquid metal(density, viscosity, and surface tension) to forecast both bubble dimensions and gas content within the melt. The model accurately predicted the methane conversion under different temperatures, methane flow rates, and liquid metal heights during the catalytic methane pyrolysis experiment using liquid copper-bismuth alloy(Cu0.45Bi0.55). In addition, the gas holdup, superficial gas velocity, and pressure distribution along the height of the liquid metal during the catalytic methane pyrolysis process were obtained. Closely matching experimental data with model predictions provides compelling evidence of the model's robustness and reliability. The proposed model would be useful for reactor optimization and high hydrogen scale-up.

Key words: Liquid metal, Kinetics, Hydrodynamics, Catalytic methane pyrolysis

中图分类号: 

TrendMD: