高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (9): 20230166.doi: 10.7503/cjcu20230166
收稿日期:
2023-04-01
出版日期:
2023-09-10
发布日期:
2023-09-08
通讯作者:
陈红征
E-mail:hzchen@zju.edu.cn
基金资助:
LI Yaokai, GUAN Shitao, ZUO Lijian, CHEN Hongzheng()
Received:
2023-04-01
Online:
2023-09-10
Published:
2023-09-08
Contact:
CHEN Hongzheng
E-mail:hzchen@zju.edu.cn
Supported by:
摘要:
半透明有机太阳能电池(STOSC)能够同时发电和透光, 是极具应用前景的新能源技术, 未来可应用于建筑物的窗户和屋顶实现光电建筑一体化, 以及农业温室和交通工具等多种领域. 然而, 半透明电池的能量转换效率(PCE)和平均可见光透过率(AVT)的均衡调谐仍是一个问题. 理想的高性能半透明有机太阳能电池需要平衡与提高AVT和PCE, 即在选择性吸收和利用非可见光谱的光子转换为电能的同时, 透过可见光谱区域光子实现透光, 并保持良好的审美观感和颜色纯度. 本文从活性层调控策略、 器件工程和多功能STOSC等多个角度, 讨论和总结了实现高性能STOSC的途径, 为推进该技术的研究和发展提供有益的参考和建议.
中图分类号:
TrendMD:
李耀凯, 关诗陶, 左立见, 陈红征. 高性能半透明有机太阳能电池的实现途径. 高等学校化学学报, 2023, 44(9): 20230166.
LI Yaokai, GUAN Shitao, ZUO Lijian, CHEN Hongzheng. Approaches to Achieving High-performance Semitransparent Organic Solar Cells. Chem. J. Chinese Universities, 2023, 44(9): 20230166.
Active layer | PCE(%) | AVT(%) | LUE(%) | CRI | Ref. | |
---|---|---|---|---|---|---|
Tandem | FAPbBr x Cl3-x & PCE10∶6TIC⁃4F | 10.55 | 52.91 | 5.66 | 68 | [ |
Ternary | PM6∶BTP⁃eC9∶L8⁃BO | 11.44 | 46.79 | 5.35 | 85.39 | [ |
PM6∶BTP⁃eC9∶L8⁃BO | 12.95 | 38.67 | 5.0 | 73.61 | [ | |
PCE⁃10∶BT⁃CIC∶TT⁃FIC | 8.0 | 44.2 | 3.56 | 87 | [ | |
PM6∶Y6⁃BO∶2PACz | 11.3 | 30.0 | 3.39 | — | [ | |
PBOF∶BTP⁃eC9∶L8⁃BO | 10.01 | 30.48 | 3.05 | — | [ | |
PM6∶Y6∶DTNIF | 13.49 | 22.58 | 3.04 | — | [ | |
PM6∶Y6∶BTTPC | 12.3 | 23.45 | 2.88 | — | [ | |
PBDB⁃T∶Y1∶PTAA | 11.7 | 20.1 | 2.35 | — | [ | |
PM6-Ir1∶BTP⁃eC9∶PC71BM | 16.44 | 12.75 | 2.09 | 93.1 | [ | |
PCE10∶J71∶IHIC | 9.37 | 21.4 | 2.00 | 97 | [ | |
PBT1⁃S∶PCE10∶PC71BM | 9.2 | 20 | 1.84 | — | [ | |
J52∶IEICO⁃4F∶PC71BM | 7.75 | 19.9 | 1.54 | — | [ | |
Binary | PCE10⁃2F∶Y6 | 10.01 | 50.05 | 5.01 | — | [ |
PCE⁃10∶A078 | 10.8 | 45.7 | 5.0 | 86 | [ | |
PCE10⁃BDT2F⁃0.8∶Y6 | 10.85 | 41.08 | 4.46 | 76.35 | [ | |
PM6∶L8⁃BO | 12.8 | 34.55 | 4.42 | 87 | [ | |
PCE10∶H3 | 8.38 | 50.09 | 4.19 | 76.85 | [ | |
PCE10∶FOIC | 10.3 | 37.4 | 3.85 | — | [ | |
PBT1⁃C⁃2Cl∶Y6 | 9.1 | 40.1 | 3.65 | — | [ | |
PCE10∶IHIC | 9.77 | 36 | 3.51 | — | [ | |
PM6∶Y6 | 12.88 | 25.6 | 3.3 | 97.6 | [ | |
PCE10∶IUIC | 10.2 | 31 | 3.16 | — | [ | |
PBNS∶IT⁃4F | 9.83 | 32 | 3.14 | — | [ | |
PCE10∶BTCIC | 7.1 | 43 | 3.05 | 91 | [ | |
PM6∶ITIC⁃4F | 11.20 | 26.22 | 2.93 | 97.5 | [ | |
PCE10∶ACS8 | 11.1 | 28.6 | 2.89 | 84 | [ | |
PCE10∶IEICO⁃4F | 4.06 | 70.6 | 2.86 | 86.3 | [ | |
PCE10∶ATT2 | 7.7 | 31 | 2.39 | — | [ | |
PCE10∶IEICO⁃4F | 9.48 | 23.7 | 2.24 | — | [ | |
PCE10∶IEICO⁃4Cl | 8.38 | 25.6 | 2.14 | — | [ | |
PCE10∶FNIC2 | 9.51 | 20.3 | 1.93 | 83 | [ | |
J71∶IT⁃M | 7.23 | 25.05 | 1.81 | 79.2 | [ | |
PBDTTT⁃E⁃T∶IEICO | 6.5 | 25 | 1.62 | — | [ | |
J71∶IEICO⁃4F | 4.45 | 27.26 | 1.21 | 61.0 | [ |
Table 1 Photovoltaic and optical performance parameters of recently reported high-performance semitransparent organic photovoltaics
Active layer | PCE(%) | AVT(%) | LUE(%) | CRI | Ref. | |
---|---|---|---|---|---|---|
Tandem | FAPbBr x Cl3-x & PCE10∶6TIC⁃4F | 10.55 | 52.91 | 5.66 | 68 | [ |
Ternary | PM6∶BTP⁃eC9∶L8⁃BO | 11.44 | 46.79 | 5.35 | 85.39 | [ |
PM6∶BTP⁃eC9∶L8⁃BO | 12.95 | 38.67 | 5.0 | 73.61 | [ | |
PCE⁃10∶BT⁃CIC∶TT⁃FIC | 8.0 | 44.2 | 3.56 | 87 | [ | |
PM6∶Y6⁃BO∶2PACz | 11.3 | 30.0 | 3.39 | — | [ | |
PBOF∶BTP⁃eC9∶L8⁃BO | 10.01 | 30.48 | 3.05 | — | [ | |
PM6∶Y6∶DTNIF | 13.49 | 22.58 | 3.04 | — | [ | |
PM6∶Y6∶BTTPC | 12.3 | 23.45 | 2.88 | — | [ | |
PBDB⁃T∶Y1∶PTAA | 11.7 | 20.1 | 2.35 | — | [ | |
PM6-Ir1∶BTP⁃eC9∶PC71BM | 16.44 | 12.75 | 2.09 | 93.1 | [ | |
PCE10∶J71∶IHIC | 9.37 | 21.4 | 2.00 | 97 | [ | |
PBT1⁃S∶PCE10∶PC71BM | 9.2 | 20 | 1.84 | — | [ | |
J52∶IEICO⁃4F∶PC71BM | 7.75 | 19.9 | 1.54 | — | [ | |
Binary | PCE10⁃2F∶Y6 | 10.01 | 50.05 | 5.01 | — | [ |
PCE⁃10∶A078 | 10.8 | 45.7 | 5.0 | 86 | [ | |
PCE10⁃BDT2F⁃0.8∶Y6 | 10.85 | 41.08 | 4.46 | 76.35 | [ | |
PM6∶L8⁃BO | 12.8 | 34.55 | 4.42 | 87 | [ | |
PCE10∶H3 | 8.38 | 50.09 | 4.19 | 76.85 | [ | |
PCE10∶FOIC | 10.3 | 37.4 | 3.85 | — | [ | |
PBT1⁃C⁃2Cl∶Y6 | 9.1 | 40.1 | 3.65 | — | [ | |
PCE10∶IHIC | 9.77 | 36 | 3.51 | — | [ | |
PM6∶Y6 | 12.88 | 25.6 | 3.3 | 97.6 | [ | |
PCE10∶IUIC | 10.2 | 31 | 3.16 | — | [ | |
PBNS∶IT⁃4F | 9.83 | 32 | 3.14 | — | [ | |
PCE10∶BTCIC | 7.1 | 43 | 3.05 | 91 | [ | |
PM6∶ITIC⁃4F | 11.20 | 26.22 | 2.93 | 97.5 | [ | |
PCE10∶ACS8 | 11.1 | 28.6 | 2.89 | 84 | [ | |
PCE10∶IEICO⁃4F | 4.06 | 70.6 | 2.86 | 86.3 | [ | |
PCE10∶ATT2 | 7.7 | 31 | 2.39 | — | [ | |
PCE10∶IEICO⁃4F | 9.48 | 23.7 | 2.24 | — | [ | |
PCE10∶IEICO⁃4Cl | 8.38 | 25.6 | 2.14 | — | [ | |
PCE10∶FNIC2 | 9.51 | 20.3 | 1.93 | 83 | [ | |
J71∶IT⁃M | 7.23 | 25.05 | 1.81 | 79.2 | [ | |
PBDTTT⁃E⁃T∶IEICO | 6.5 | 25 | 1.62 | — | [ | |
J71∶IEICO⁃4F | 4.45 | 27.26 | 1.21 | 61.0 | [ |
Fig.3 Multi⁃component strategy(A) Normalized absorption spectra of PCE10, COi8DFIC and IEICO-4F, and photographs of the STOSC devices[48]; (B) normalized absorption spectra of PM6, Y6, BTTPC and Y6∶BTTPC films, and photographs of the STOSC devices[34]; (C) normalized absorption spectra of FC-S1, PM6 and Y6-BO, photopic response curves, and photographs of the STOSC devices[52].(A) Copyright 2018, Royal Society of Chemistry; (B) Copyright 2020, Wiley⁃VCH; (C) Copyright 2022, Wiley⁃VCH.
Fig.4 Adjusting donor∶acceptor(D∶A) ratio strategy[42](A)—(F) AFM height images(1 μm×1 μm) for PBT1⁃C⁃2Cl∶Y6 blend films with different weight ratios; (K) transmittance spectra of PBT1⁃C⁃2Cl∶Y6 based ST⁃OSCs with various D/A weight ratios. Copyright 2020, Wiley⁃VCH.
Fig.5 Adjusting donor∶acceptor(D∶A) ratio strategy(A) Schematic diagrams of active layers without or with PTAA[35]; (B) normalized absorption spectra of PM6∶L8-BO∶BTP-eC9 blend films at varied D∶A weight ratios of 1∶1.3, 1∶2, and 1∶3, and the yellow area represents the photopic response of human eyes; (C) J⁃V curves and (D) EQE and transmittance spectra of the ternary opaque and ST-PV devices at varied D∶A weight ratios of 1∶1.3, 1∶2, and 1∶3; (E) dependence of PCEs on the varied D∶A weight ratios of 1∶1.3, 1∶2, and 1∶3(the error bars represent the standard deviations)[9].(A) Copyright 2020, Wiley⁃VCH; (B)—(E) Copyright 2022, Wiley⁃VCH.
Fig.6 Sequential deposition strategy(A) Schematic illustrations of semitransparent devices based on BHJ and PPHJ structures[57]; (B) variation of PCE and AVT verses active layer thickness based on BHJ and SD structure devices; (C) transmission spectra of ST-OPVs fabricated using the conventional BHJ method and our SD method; (D) photographs of the BHJ and SD devices[58].(A) Copyright 2022, Wiley⁃VCH; (B)—(D) Copyright 2021, Wiley⁃VCH.
Fig.7 Transparent electrode optimization(A) Conceptual diagram for the growth mechanism of the Ag film with the PEI nucleation inducer[66]; (B) growth diagram of the pristine Ag layer(up) and Au/Ag hybrid layer(down) on MoOx[67]; (C, D) AFM morphology∶13 nm Ag on PFN-Br(C), ZnO NP/PEI(D); (E, F) scanning electron microscopy(SEM) morphology∶13 nm Ag on PFN-Br(E), ZnO NP/PEI(F); (G) the absorption profile of the STOSCs with different interfacial layers, i.e. PFN-Br, ZnO NP and ZnO NP/PEI[13]; (H) sheet resistance of films and (I) transmission spectrum of evaporated Ag on ligand-optimized Ag NPs[40].(A) Copyright 2015, Springer Nature; (B) Copyright 2017, Wiley⁃VCH; (C)—(G) Copyright 2021, Wiley⁃VCH; (H, I) Copyright 2022, Wiley⁃VCH.
Fig.8 Interlayer modification strategy and tandem strategy(A—C) STOSCs with Bis⁃FIMG[68](A), PF3N⁃2TNDI[71](B) and 2PACz[32](C) as interfacial layers; (D) schematic device architecture of selective absorbing tandem ST⁃PV design[4]. Copyright 2019, Wiley⁃VCH.
Device structure | LUE(%) | Ref. |
---|---|---|
ITO/PEDOT∶PSS/PM6∶L8⁃BO∶BTP⁃eC9 /Bis⁃FIMG/Ag/TeO2 | 5.0 | [ |
ITO/PEDOT∶PSS/PCE10∶H3/ZnO NP/PEI/Ag/TeO2 | 4.06 | [ |
(LiF/TeO2)4 /glass/ITO/PEDOT∶PSS/PM6∶BTP⁃eC9∶L8⁃BO(0.8∶1∶0.2)/PDINN/Ag(12nm)/(LiF/TeO2)8/LiF | 5.35 | [ |
MgF2/SiO2 /ITO/ZnO/PCE10∶A078/MoO3/Ag(16nm)/CBP/MgF2/CBP/MgF2 | 5.0 | [ |
MgF2 /ITO/PEDOT∶PSS/PCE10⁃BDT2F⁃0.8∶Y6/PDINO/Ag(15 nm)/MoO3 | 4.46 | [ |
MgF2/SiO2 /ITO/ZnO/NSM/PCE‐10∶BT‐CIC∶TT‐FIC/MoO3/Cu⁃Ag(16nm)/(CBP/MgF2)2(SiNxSiO2)x | 3.56 | [ |
ITO/PEDOT∶PSS/PM6∶Y6 BTTPC/PFN⁃Br/Ag(14nm)/LiF/MoO3 | 2.88 | [ |
ITO/PEDOT∶PSS/PCE10∶IFIC⁃i⁃F/Bis⁃FIMG/Ag(16 nm)/(LiF/TeO2)2 | 2.15 | [ |
ITO/PEDOT∶PSS/PM6∶m⁃BTPPhC6∶BO⁃4Cl/PFNBr/Ag(14nm)/ MoO3/LiF/MoO3 | 3.58 | [ |
ITO/PEDOT∶PSS/Active layer/Au(0.8 nm)/Ag(15 nm)/(MoO3/LiF)3 pairs | 2.00 | [ |
Table 2 Optical engineering of semitransparent organic solar cells
Device structure | LUE(%) | Ref. |
---|---|---|
ITO/PEDOT∶PSS/PM6∶L8⁃BO∶BTP⁃eC9 /Bis⁃FIMG/Ag/TeO2 | 5.0 | [ |
ITO/PEDOT∶PSS/PCE10∶H3/ZnO NP/PEI/Ag/TeO2 | 4.06 | [ |
(LiF/TeO2)4 /glass/ITO/PEDOT∶PSS/PM6∶BTP⁃eC9∶L8⁃BO(0.8∶1∶0.2)/PDINN/Ag(12nm)/(LiF/TeO2)8/LiF | 5.35 | [ |
MgF2/SiO2 /ITO/ZnO/PCE10∶A078/MoO3/Ag(16nm)/CBP/MgF2/CBP/MgF2 | 5.0 | [ |
MgF2 /ITO/PEDOT∶PSS/PCE10⁃BDT2F⁃0.8∶Y6/PDINO/Ag(15 nm)/MoO3 | 4.46 | [ |
MgF2/SiO2 /ITO/ZnO/NSM/PCE‐10∶BT‐CIC∶TT‐FIC/MoO3/Cu⁃Ag(16nm)/(CBP/MgF2)2(SiNxSiO2)x | 3.56 | [ |
ITO/PEDOT∶PSS/PM6∶Y6 BTTPC/PFN⁃Br/Ag(14nm)/LiF/MoO3 | 2.88 | [ |
ITO/PEDOT∶PSS/PCE10∶IFIC⁃i⁃F/Bis⁃FIMG/Ag(16 nm)/(LiF/TeO2)2 | 2.15 | [ |
ITO/PEDOT∶PSS/PM6∶m⁃BTPPhC6∶BO⁃4Cl/PFNBr/Ag(14nm)/ MoO3/LiF/MoO3 | 3.58 | [ |
ITO/PEDOT∶PSS/Active layer/Au(0.8 nm)/Ag(15 nm)/(MoO3/LiF)3 pairs | 2.00 | [ |
Fig.10 Multi⁃functional STOSCs(A) STOSCs with Neutral color and high CRI index[37]; (B) colorful STOSCs[86]; (C) heat-insulating functional STOSCs[9]; (D) greenhouse STOSCs[87]; (E) see-through power windows[80].(A) Copyright 2019, Wiley⁃VCH; (B) Copyright 2020, American Chemical Society; (C) Copyright 2022, Wiley⁃VCH; (D) Copyright 2021, Cell Press; (E) Copyright 2022, American Chemical Society.
25 | Hu Z., Wang J., Ma X., Gao J., Xu C., Wang X., Zhang X., Wang Z., Zhang F., J. Mater. Chem. A, 2021, 9(11), 6797—6804 |
26 | Yu K., Song W., Ge J., Zheng K., Xie L., Chen Z., Qiu Y., Hong L., Liu C., Ge Z., Science China Chemistry, 2022, 65(8), 1615—1622 |
27 | Cheng H. W., Zhao Y. P., Yang Y., Adv. Energy Mater., 2022, 12(3), 3 |
28 | Xie D. S., Zhang Y., Yuan X. Y., Li Y. L., Huang F., Cao Y., Duan C. H., Adv. Funct. Mater., 2022, 2212601 |
29 | Huang X. X., Zhang L. F., Cheng Y. J., Oh J., Li C. Q., Huang B., Zhao L., Deng J. W., Zhang Y. H., Liu Z. J., Wu F. Y., Hu X. T., Yang C., Chen L., Chen Y. W., Adv. Funct. Mater., 2022, 32(5), 2108634 |
30 | Xin L., Zhong Z. P., Zhu R. H., Yu J. S., Li G., Joule, 2022, 6(8), 1918—1930 |
31 | Li Y., Ji C., Qu Y., Huang X., Hou S., Li C. Z., Liao L. S., Guo L. J., Forrest S. R., Adv. Mater., 2019, 31(40), 1903173 |
32 | Jing J., Dong S., Zhang K., Zhou Z., Xue Q., Song Y., Du Z., Ren M., Huang F., Adv. Energy Mater., 2022, 12(20), 2200453 |
33 | Yin P., Yin Z. G., Ma Y. L., Zheng Q. D., Energy Environ. Sci., 2020, 13(12), 5177—5185 |
34 | Wang D., Qin R., Zhou G., Li X., Xia R., Li Y., Zhan L., Zhu H., Lu X., Yip H. L., Chen H., Li C. Z., Adv. Mater., 2020, 32(32), 2001621 |
35 | Cheng P., Wang H. C., Zhu Y., Zheng R., Li T., Chen C. H., Huang T., Zhao Y., Wang R., Meng D., Li Y., Zhu C., Wei K. H., Zhan X., Yang Y., Adv. Mater., 2020, 32(39), 2003891 |
36 | Yuan X. X., Sun R., Wu Y., Wang T., Wang Y. H., Wang W., Yu Y., Guo J., Wu Q., Min J., Adv. Funct. Mater., 2022, 32(22), 2200107 |
37 | Zhang J., Xu G., Tao F., Zeng G., Zhang M., Yang Y. M., Li Y., Li Y., Adv. Mater., 2019, 31(10), 1807159 |
38 | Xie Y. P., Huo L. J., Fan B. B., Fu H. T., Cai Y. H., Zhang L., Li Z. Y., Wang Y., Ma W., Chen Y. W., Sun Y. M., Adv. Funct. Mater., 2018, 28(49), 1800627 |
39 | Shi H., Xia R. X., Zhang G. C., Yip H. L., Cao Y., Adv. Energy Mater., 2019, 9(5), 1803438 |
40 | Zhang Y. N., Zheng J. W., Jiang Z. Y., He X. J., Kim J., Xu L. H., Qin M. C., Lu X. H., Kyaw A. K. K., Choy W. C. H., Adv. Energy Mater., 2023, 13(7), 2203266 |
41 | Li T., Dai S., Ke Z., Yang L., Wang J., Yan C., Ma W., Zhan X., Adv. Mater., 2018, 30(10), 1705969 |
42 | Xie Y. P., Cai Y. H., Zhu L., Xia R. X., Ye L. L., Feng X., Yip H. L., Liu F., Lu G. H., Tan S. T., Sun Y. M., Adv. Funct. Mater., 2020, 30(28), 2002181 |
43 | Wu Y., Yang H., Zou Y., Dong Y. Y., Yuan J. Y., Cui C. H., Li Y. F., Energy Environ. Sci., 2019, 12(2), 675—683 |
44 | Meng R. Q., Jiang Q. Q., Liu D. Y., npj Flexible Electronics, 2022, 6(1), 39 |
45 | Liu F., Zhou Z., Zhang C., Zhang J., Hu Q., Vergote T., Liu F., Russell T. P., Zhu X., Adv. Mater., 2017, 29(21), 1606574 |
46 | Hu Z., Wang Z., Zhang F., J. Mater. Chem. A, 2019, 7(12), 7025—7032 |
47 | Sun C., Xia R. X., Shi H., Yao H. F., Liu X., Hou J. H., Huang F., Yip H. L., Cao Y., Joule, 2018, 2(9), 1816—1826 |
48 | Ma X. L., Xiao Z., An Q. S., Zhang M., Hu Z. H., Wang J. X., Ding L. M., Zhang F. J., J. Mater. Chem. A, 2018, 6(43), 21485—21492 |
49 | Zhan L., Li S., Lau T. K., Cui Y., Lu X., Shi M., Li C. Z., Li H., Hou J., Chen H., Energy Environ. Sci., 2020, 13(2), 635—645 |
50 | Yin Y. L., Zhan L. L., Liu M., Yang C. Q., Guo F., Liu Y., Gao S., Zhao L. C., Chen H. Z., Zhang Y., Nano Energy, 2021, 90, 106538 |
51 | Zhang K. N., Guo J. J., Zhang L. J., Qin C. C., Yin H., Gao X. Y., Hao X. T., Adv. Funct. Mater., 2021, 31(20), 2170141 |
52 | Liu X., Liu Z., Chen M., Wang Q., Pan F., Liu H., Zhang L., Chen J., Macromol. Rapid Commun., 2022, 43(22), 2200199 |
53 | Liu W., Sun S., Zhou L., Cui Y., Zhang W., Hou J., Liu F., Xu S., Zhu X., Angew. Chem., 2022, 61(19), 202116111 |
54 | Luo M., Zhao C., Yuan J., Hai J., Cai F., Hu Y., Peng H., Bai Y., Tan Z. A., Zou Y., Mater. Chem. Front., 2019, 3(11), 2483—2490 |
55 | Xu L. F., Xu Z. W., Lin J. P. , Wang L. Q., Chin. J. Polym. Sci., 2022, 40(1), 29—37 |
56 | Zhan L., Li S., Xia X., Li Y., Lu X., Zuo L., Shi M., Chen H., Adv. Mater., 2021, 33(12), 2007231 |
57 | Liu S., Li H., Wu X., Chen D., Zhang L., Meng X., Tan L., Hu X., Chen Y., Adv. Mater., 2022, 34(23), 2201604 |
58 | Wang H. C., Cheng P., Tan S., Chen C. H., Chang B., Tsao C. S., Chen L. Y., Hsieh C. A., Lin Y. C., Cheng H. W., Yang Y., Wei K. H., Adv. Energy Mater., 2021, 11(13), 2003576 |
59 | Li Y., Meng L., Yang Y. M., Xu G., Hong Z., Chen Q., You J., Li G., Yang Y., Li Y., Nat. Commun., 2016, 7(1), 10214 |
60 | Li Y., Mao L., Gao Y., Zhang P., Li C., Ma C., Tu Y., Cui Z., Chen L., Sol. Energy Mater. Sol. Cells, 2013, 113, 85—89 |
61 | Song W., Fan X., Xu B., Yan F., Cui H., Wei Q., Peng R., Hong L., Huang J. , Ge Z., Adv. Mater., 2018, 30(26), 1800075 |
62 | Zhang Y. N., He X. J., Babu D., Li W. H., Gu X. Y., Shan C. W., Kyaw A. K. K., Choy W. C. H., Adv. Optical Mater., 2021, 9(8), 2002108 |
63 | Li Y. W., Xu G. Y., Cui C. H., Li Y. F., Adv. Energy Mater., 2018, 8(7), 1701791 |
64 | Chen F., Cheng N., Zhao J. W., Song Y. T., Sun Y. Y., Lou X. L., Tong X. Y., Chem. J. Chinese Universities, 2021, 42(6), 1891—1898 |
陈峰, 程娜, 赵健伟, 宋易恬, 孙燕燕, 娄鑫梨, 童夏燕. 高等学校化学学报, 2021, 42(6), 1891—1898 | |
65 | Yun J., Adv. Funct. Mater., 2017, 27(18), 1606641 |
66 | Kang H., Jung S., Jeong S., Kim G., Lee K., Nat. Commun., 2015, 6(1), 6503 |
67 | Xu G., Hu X., Liao X., Chen Y., Chin. J. Polym. Sci., 2021, 39(11), 1441—1447 |
68 | Li X., Xia R. X., Yan K. R., Yip H. L., Chen H. Z., Li C. Z., Chin. Chem. Lett., 2020, 31(6), 1608—1611 |
69 | Yan K. R. , Li C. Z., Macromol. Chem. Phys., 2019, 220(10), 1900084 |
70 | Yan K. R., Liu Z. X., Li X., Chen J. H., Chen H. Z. , Li C. Z., Organic Chemistry Frontiers, 2018, 5(19), 2845—2851 |
71 | Shi H., Xia R. X., Sun C., Xiao J. Y., Wu Z. H., Huang F., Yip H. L., Cao Y., Adv. Energy Mater., 2017, 7(20), 1701121 |
72 | Chang C. Y., Zuo L. J., Yip H. L., Li C. Z., Li Y. X., Hsu C. S., Cheng Y. J., Chen H. Z., Jen A. K. Y., Adv. Energy Mater., 2014, 4(7), 1301645 |
73 | Chen S., Yao H., Hu B., Zhang G., Arunagiri L., Ma L. K., Huang J., Zhang J., Zhu Z., Bai F., Ma W., Yan H., Adv. Energy Mater., 2018, 8(31), 1800529 |
1 | Tai Q., Yan F., Adv. Mater., 2017, 29(34), 1700192 |
2 | Yang C. C., Liu D. Y., Bates M., Barr M. C., Lunt R. R., Joule, 2019, 3(8), 1803—1809 |
3 | Traverse C. J., Pandey R., Barr M. C. , Lunt R. R., Nat. Energy, 2017, 2(11), 849—860 |
4 | Zuo L., Shi X., Fu W. , Jen A. K., Adv. Mater., 2019, 31(36), e1901683 |
5 | Chen Z., Ma S. S., Zhang K., Hu Z. C., Yin Q. W., Huang F. , Cao Y., Chin. J. Polym. Sci., 2021, 39(1), 35—42 |
6 | Wang T., Sun R., Yang X. R., Wu Y., Wang W., Li Q., Zhang C. F. , Min J., Chin. J. Polym. Sci., 2022, 40(8), 877—888 |
7 | Wu X. Y., Liu L. L., Xie Z. Q., Ma Y. G., Chem. J. Chinese Universities, 2016, 37(3), 409—425 |
吴小龑, 刘琳琳, 解增旗, 马於光. 高等学校化学学报, 2016, 37(3), 409—425 | |
8 | Ren J., Shu X., Wang Y., Wang D., Wu G., Zhang X., Jin Q., Liu J., Wu Z., Xu Z., Li C. Z., Li H., Chin. Chem. Lett., 2022, 33(4), 1650—1658 |
9 | Guan S., Li Y., Yan K., Fu W., Zuo L., Chen H., Adv. Mater., 2022, 34(41), 2205844 |
10 | Huang X., Cheng Y., Fang Y., Zhang L., Hu X., Jeong S. Y., Zhang H., Woo H. Y., Wu F. , Chen L., Energy Environ. Sci., 2022, 15(11), 4776—4788 |
11 | Li Y., Guo X., Peng Z., Qu B., Yan H., Ade H., Zhang M., Forrest S. R., PNAS, 2020, 117(35), 21147—21154 |
12 | Liu X., Zhong Z., Zhu R., Yu J. , Li G., Joule, 2022, 6(8), 1918—1930 |
13 | Li Y. K., He C. L., Zuo L. J., Zhao F., Zhan L. L., Li X., Xia R. X., Yip H. L., Li C. Z., Liu X., Chen H. Z., Adv. Energy Mater., 2021, 11(11), 2003408 |
74 | Betancur R., Romero⁃Gomez P., Martinez⁃Otero A., Elias X., Maymo M., Martorell J., Nat. Photonics, 2013, 7(12), 995—1000 |
75 | Yu W. J., Shen L., Shen P., Meng F. X., Long Y. B., Wang Y. N., Lv T. Y., Ruan S. P., Chen G. H., Sol. Energy Mater. Sol. Cells, 2013, 117, 198—202 |
76 | Yu W., Shen L., Shen P., Long Y., Sun H., Chen W., Ruan S., ACS Appl. Mater. Interfaces, 2014, 6(1), 599—605 |
77 | Zheng X., Zuo L., Zhao F., Li Y., Chen T., Shan S., Yan K., Pan Y., Xu B., Li C. Z., Shi M., Hou J., Chen H., Adv. Mater., 2022, 34(17), e2200044 |
78 | Xia R. X., Brabec C. J., Yip H. L., Cao Y., Joule, 2019, 3(9), 2241—2254 |
79 | Zhao F., Zuo L., Li Y., Zhan L., Li S., Li X., Xia R., Yip H. L., Chen H., Solar RRL, 2021, 5(9), 2100339 |
80 | Wang D., Li Y. H., Zhou G. Q., Gu E., Xia R. X., Yan B. Y., Yao J. Z., Zhu H. M., Lu X. H., Yip H. L., Chen H. Z., Li C. Z., Energy Environ. Sci., 2022, 15(6), 2629—2637 |
81 | Chen K. S., Salinas J. F., Yip H. L., Huo L., Hou J. , Jen A. K. Y., Energy Environ. Sci., 2012, 5(11), 9551—9557 |
82 | Zhong J., Xiao Z., Liang W., Wu Y., Ye Q., Xu H., Deng H., Shen L., Feng X., Long Y., ACS Appl. Mater. Interfaces, 2019, 11(51), 47992—48001 |
83 | Lu J. H., Yu Y. L., Chuang S. R., Yeh C. H., Chen C. P., J. Phys. Chem. C, 2016, 120(8), 4233—4239 |
84 | Kim Y., Son J., Shafian S., Kim K., Hyun J. K., Adv. Optical Mater., 2018, 6(13), 1800051 |
85 | Han D., Han S., Bu Z., Deng Y., Liu C., Guo W., Solar RRL, 2022, 6(9), 2200441 |
86 | Li X., Xia R. X., Yan K. R., Ren J., Yip H. L., Li C. Z., Chen H. Z., ACS Energy Lett., 2020, 5(10), 3115—3123 |
14 | Wang W., Yan C., Lau T. K., Wang J., Liu K., Fan Y., Lu X., Zhan X., Adv. Mater., 2017, 29(31), 1701308 |
15 | Jia B., Dai S., Ke Z., Yan C., Ma W. , Zhan X., Chem. Mater., 2017, 30(1), 239—245 |
16 | Li Y., Lin J. D., Che X., Qu Y., Liu F., Liao L. S., Forrest S. R., J. Am. Chem. Soc., 2017, 139(47), 17114—17119 |
17 | Wang J., Zhang J., Xiao Y., Xiao T., Zhu R., Yan C., Fu Y., Lu G., Lu X., Marder S. R., Zhan X., J. Am. Chem. Soc., 2018, 140(29), 9140—9147 |
18 | Chen J., Li G. D., Zhu Q. L., Guo X., Fan Q. P., Ma W., Zhang M. J., J. Mater. Chem. A, 2019, 7(8), 3745—3751 |
19 | Cui Y., Yang C., Yao H., Zhu J., Wang Y., Jia G., Gao F., Hou J., Adv. Mater., 2017, 29(43), 1703080 |
20 | Zhan L., Li S., Li Y., Sun R., Min J., Chen Y., Fang J., Ma C. Q., Zhou G., Zhu H., Zuo L., Qiu H., Yin S., Chen H., Adv. Energy Mater., 2022, 12(39), 2201076 |
21 | Zhan L., Yin S., Li Y., Li S., Chen T., Sun R., Min J., Zhou G., Zhu H., Chen Y., Fang J., Ma C. Q., Xia X., Lu X., Qiu H., Fu W., Chen H., Adv. Mater., 2022, 34(45), 2206269 |
22 | Chong K., Xu X., Meng H., Xue J., Yu L., Ma W., Peng Q., Adv. Mater., 2022, 34(13), 2109516 |
23 | Sun R., Wu Y., Yang X., Gao Y., Chen Z., Li K., Qiao J., Wang T., Guo J., Liu C., Adv. Mater., 2022, 34(26), 2110147 |
24 | Bai Y., Zhao C., Chen X., Zhang S., Zhang S., Hayat T., Alsaedi A., Tan Z. a., Hou J., Li Y., J. Mater. Chem. A, 2019, 7(26), 15887—15894 |
87 | Wang D., Liu H. R., Li Y. H., Zhou G. Q., Zhan L. L., Zhu H. M., Lu X. H., Chen H. Z. , Li C. Z., Joule, 2021, 5(4), 945—957 |
88 | Liu Y., Cheng P., Li T., Wang R., Li Y., Chang S. Y., Zhu Y., Cheng H. W., Wei K. H., Zhan X., Sun B. , Yang Y., ACS Nano, 2019, 13(2), 1071—1077 |
89 | Fan J. Y., Liu Z. X., Rao J., Yan K., Chen Z., Ran Y., Yan B., Yao J., Lu G., Zhu H., Li C. Z., Chen H., Adv. Mater., 2022, 34(28), 2110569 |
90 | Liu X., Zhao Y. S., Yu J. S., Zhu R. H., Mater. Chem. Front., 2021, 5(23), 8197—8205 |
91 | Cui Y., Wang Y., Bergqvist J., Yao H., Xu Y., Gao B., Yang C., Zhang S., Inganäs O., Gao F., Hou J., Nat. Energy, 2019, 4(9), 768—775 |
92 | Cui Y., Yao H. F., Xu Y., Bi P. Q., Zhang J. Q., Zhang T., Hong L., Chen Z. H., Wei Z. X., Hao X. T., Hou J. H., Chin. J. Polym. Sci., 2022, 40(8), 979—988 |
93 | Meng X., Xing Z., Hu X., Chen Y., Chin. J. Polym. Sci., 2022, 40(12), 1522—1566 |
[1] | 李伟, 陈宸, 刘丹, 王涛. 非富勒烯电子受体多尺度分子聚集体[J]. 高等学校化学学报, 2023, 44(9): 20230160. |
[2] | 马伊帆, 张雅敏, 甘胜民, 张昱琛, 费贤, 王汀, 张则琪, 巩雪柱, 张浩力. 基于宽带隙小分子给体第三组分的三元有机光伏器件[J]. 高等学校化学学报, 2023, 44(9): 20230170. |
[3] | 张丽婷, 仇丁丁, 张建齐, 吕琨, 魏志祥. 具有热退火提升器件VOC特性的Z构型A⁃DA'D⁃A结构受体[J]. 高等学校化学学报, 2023, 44(9): 20230164. |
[4] | 杨航, 凡晨岭, 崔乃哲, 李肖肖, 张雯婧, 崔超华. 添加剂和溶剂退火协同优化制备高性能厚膜有机太阳能电池[J]. 高等学校化学学报, 2023, 44(9): 20230162. |
[5] | 宋欣, 高申正, 许善磊, 徐浩, 周鑫杰, 朱梦冰, 郝儒林, 朱卫国. 挥发固体添加剂调控有机太阳能电池性能的研究进展[J]. 高等学校化学学报, 2023, 44(9): 20230151. |
[6] | 郑昊霖, 刘武岳, 朱晓张. 半透明有机太阳能电池研究进展[J]. 高等学校化学学报, 2023, 44(9): 20230365. |
[7] | 吴济发, 吴汉平, 袁琳, 彭小彬. 协同富勒烯和非富勒烯受体提高卟啉全小分子三元有机太阳能电池的性能[J]. 高等学校化学学报, 2023, 44(9): 20230136. |
[8] | 宋亚男, 游祖豪, 王旭, 刘瑶. 电活性紫罗烯有机光伏界面材料的研究进展[J]. 高等学校化学学报, 2023, 44(9): 20230167. |
[9] | 王家成, 蔡贵龙, 张亚静, 王嘉宇, 路新慧, 占肖卫, 陈兴国. 侧链的简单调制使近红外吸收的非富勒烯受体实现更高的短路电流密度[J]. 高等学校化学学报, 2023, 44(9): 20230163. |
[10] | 张立福, 王新康, 陈义旺. 用平衡相容性和相分离的新策略提高有机太阳电池效率[J]. 高等学校化学学报, 2023, 44(9): 20230177. |
[11] | 李浩, 杨晨熠, 李佳尧, 张少青, 侯剑辉. 基于受体1-受体2型聚合物给体的高效有机太阳能电池[J]. 高等学校化学学报, 2023, 44(9): 20230157. |
[12] | 施世领, 蒋寒曦, 涂雪杨, 鲜开虎, 韩德霞, 李艳如, 姚翔, 叶龙, 费竹平. 基于芳环取代酰亚胺端基的非富勒烯受体材料的合成与光伏性能[J]. 高等学校化学学报, 2023, 44(9): 20230182. |
[13] | 郭子琦, 焦灿灿, 吴思敏, 孟令贤, 孙延娜, 柯鑫, 万相见, 陈永胜. 小分子给体桥联单元烷基链取代位置对光伏器件性能的影响[J]. 高等学校化学学报, 2023, 44(9): 20230180. |
[14] | 张伟超, 杨朔, 李世麟, 张莹玉, 张渊, 张弘, 周惠琼. β-丙氨酸作为有机太阳能电池双重修饰添加剂的研究[J]. 高等学校化学学报, 2023, 44(9): 20230185. |
[15] | 何韦, 陈飞, 李鸿祥, 王嘉宇, 秦家强, 崔宁博, 严岑琪, 程沛. 基于三氟苯甲酸自组装阳极界面层的高性能有机太阳能电池[J]. 高等学校化学学报, 2023, 44(7): 20230161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||