高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (9): 20230365.doi: 10.7503/cjcu20230365
• 综合评述 • 上一篇
收稿日期:
2023-08-10
出版日期:
2023-09-10
发布日期:
2023-08-28
通讯作者:
朱晓张
E-mail:xzzhu@iccas.ac.cn
基金资助:
ZHENG Haolin1,2, LIU Wuyue1, ZHU Xiaozhang1,2()
Received:
2023-08-10
Online:
2023-09-10
Published:
2023-08-28
Contact:
ZHU Xiaozhang
E-mail:xzzhu@iccas.ac.cn
Supported by:
摘要:
半透明有机光伏(ST-OPVs)相比其它无机光伏技术, 因为其活性层材料可调节的电子能级和选择性的吸收光谱, 在作为温室的发电屋顶、 现代建筑外墙和采光玻璃等应用中具有本征优势. 随着高效窄带隙聚合物给体和近红外非富勒烯受体材料的快速发展, ST-OPVs的光利用效率在过去十年取得了显著进展, 本征和具有光学修饰的半透明器件的光利用效率分别超过了3%和5%. 为了进一步推动半透明有机光伏技术的实用化, 进一步提升器件的光利用效率仍是研究重点. 基于此, 本文分别从半透明器件的理论模型、 活性层材料设计和器件光学修饰等角度综合评述了近期ST-OPVs的重要进展, 为未来器件性能的优化提供了参考.
中图分类号:
TrendMD:
郑昊霖, 刘武岳, 朱晓张. 半透明有机太阳能电池研究进展. 高等学校化学学报, 2023, 44(9): 20230365.
ZHENG Haolin, LIU Wuyue, ZHU Xiaozhang. Research Progress of Semitransparent Organic Solar Cells. Chem. J. Chinese Universities, 2023, 44(9): 20230365.
Device struture | Eg/eV | VOC/V | JSC/ (mA·cm‒2) | FF | PCE (%) | AVT (%) | LUE (%) | Ref. |
---|---|---|---|---|---|---|---|---|
ITO/PEDOT∶PSS/J101∶ZITI/PDINO/Ag | 1.50 | 0.898 | 19.06 | 64.5 | 11.00 | 22 | 2.39 | [ |
ITO/SnO2 or TIPD/PCE10∶Y14/MoO3/Al | 1.23 | 0.793 | 22.48 | 71.1 | 12.67 | 23 | 2.91 | [ |
ITO/PEDOT∶PSS/D18⁃Cl∶Y6⁃1O∶Y6/PDIN/(Au/Ag) | 1.38 | 0.884 | 19.56 | 75.3 | 13.02 | 20 | 2.63 | [ |
ITO/PEDOT∶PSS/PCE10∶Y6/PDINO/Ag/MoO3 | 1.35 | 0.786 | 17.79 | 71.4 | 10.01 | 50 | 5.01 | [ |
ITO/ZnO/PCE⁃10∶BT⁃IC/MoO3/Ag | 1.68 | 0.680 | 18.00 | 67.5 | 8.20 | 26 | 2.13 | [ |
ITO/ZnO/PTB7⁃Th∶IUIC/MoO x /Ag | 1.33 | 0.794 | 18.31 | 70.3 | 10.2 | 31 | 3.16 | [ |
ITO/ZnO/PTB7⁃Th∶FOIC/MoO3/Ag | 1.32 | 0.739 | 20.00 | 69.9 | 10.3 | 37 | 3.85 | [ |
ITO/ZnO/J71∶ITVflC/PDINO/Al | 1.37 | 0.742 | 17.54 | 63.1 | 8.20 | 26 | 2.22 | [ |
ITO/ZnO/PCE⁃10∶A078/MoO3/Ag | 1.40 | 0.750 | 20.40 | 70.0 | 10.8 | 46 | 5.00 | [ |
ITO/PEDOT∶PSS/PTB7⁃Th∶H3/PFN⁃Br/Ag | 1.34 | 0.720 | 17.30 | 67.7 | 8.38 | 50 | 4.06 | [ |
Ag/WO3/P3HT∶PCBM/TiO2/FTO/ITO | 0.80 | 0.600 | 7.05 | 61.1 | 2.58 | NA | NA | [ |
1DPC/ITO/PFN/PTB7∶PC71BM/ PEDOT∶PSS | 1.24 | 0.770 | 12.25 | 55.8 | 5.20 | 23 | 1.21 | [ |
PET/Ag/PH1000/ZnO/PTB7⁃Th∶PC71BM/MoO x /(Au/Ag)/DM⁃6 | 0.92 | 0.770 | 12.70 | 65.7 | 6.40 | 12 | 0.75 | [ |
ITO/PEDOT/PTB7∶PC71BM/PC⁃Tn⁃Ag | 1.24 | 0.773 | 10.90 | 70.0 | 5.60 | 28 | 1.57 | [ |
(LiF/TeO2)4/glass/ITO/PEDOT∶PSS/PM6∶BTP⁃eC9∶L8⁃BO/ PDINN/Ag/(LiF/TeO2)8/LiF | 1.54 | 0.854 | 17.97 | 74.5 | 11.44 | 47 | 5.35 | [ |
ITO/nc⁃TiO2/P3HT∶PC61BM/MoO3/Ag/MoO3 | 0.80 | 0.595 | 4.83 | 61.2 | 1.76 | NA | NA | [ |
ITO/ZnO/PBT1⁃C⁃2Cl∶Y6/MoO3/Au | 1.46 | 0.820 | 15.71 | 67.2 | 9.10 | 40 | 3.65 | [ |
ITO/PEDOT∶PSS/PBDB⁃T∶ITIC⁃m/ZnO NPs/Sb2O3/Ag/Sb2O3 | 1.90 | 0.890 | 4.93 | 0.68 | 3.00 | 16 | 0.49 | [ |
ITO/PEDOT∶PSS/MoO3/DTDCPB/DTDCPB∶C70/C70/ Bphen/Ag/NPB/Ag | 1.94 | 0.896 | 9.81 | 55.3 | 5.15 | 25 | 1.29 | [ |
ITO/ZnO/PTB7⁃Th∶PC71BM/MoO3/Au/Ag/WO3/Ag | 0.92 | 0.787 | 17.05 | 66.6 | 8.93 | 26 | 2.28 | [ |
ITO/Hf(ACB1)4/PM6∶Y6/MoO3/Ag | 1.65 | 0.818 | 19.69 | 71.4 | 11.51 | 26 | 2.95 | [ |
Table 1 Summary of representative ST-OPVs
Device struture | Eg/eV | VOC/V | JSC/ (mA·cm‒2) | FF | PCE (%) | AVT (%) | LUE (%) | Ref. |
---|---|---|---|---|---|---|---|---|
ITO/PEDOT∶PSS/J101∶ZITI/PDINO/Ag | 1.50 | 0.898 | 19.06 | 64.5 | 11.00 | 22 | 2.39 | [ |
ITO/SnO2 or TIPD/PCE10∶Y14/MoO3/Al | 1.23 | 0.793 | 22.48 | 71.1 | 12.67 | 23 | 2.91 | [ |
ITO/PEDOT∶PSS/D18⁃Cl∶Y6⁃1O∶Y6/PDIN/(Au/Ag) | 1.38 | 0.884 | 19.56 | 75.3 | 13.02 | 20 | 2.63 | [ |
ITO/PEDOT∶PSS/PCE10∶Y6/PDINO/Ag/MoO3 | 1.35 | 0.786 | 17.79 | 71.4 | 10.01 | 50 | 5.01 | [ |
ITO/ZnO/PCE⁃10∶BT⁃IC/MoO3/Ag | 1.68 | 0.680 | 18.00 | 67.5 | 8.20 | 26 | 2.13 | [ |
ITO/ZnO/PTB7⁃Th∶IUIC/MoO x /Ag | 1.33 | 0.794 | 18.31 | 70.3 | 10.2 | 31 | 3.16 | [ |
ITO/ZnO/PTB7⁃Th∶FOIC/MoO3/Ag | 1.32 | 0.739 | 20.00 | 69.9 | 10.3 | 37 | 3.85 | [ |
ITO/ZnO/J71∶ITVflC/PDINO/Al | 1.37 | 0.742 | 17.54 | 63.1 | 8.20 | 26 | 2.22 | [ |
ITO/ZnO/PCE⁃10∶A078/MoO3/Ag | 1.40 | 0.750 | 20.40 | 70.0 | 10.8 | 46 | 5.00 | [ |
ITO/PEDOT∶PSS/PTB7⁃Th∶H3/PFN⁃Br/Ag | 1.34 | 0.720 | 17.30 | 67.7 | 8.38 | 50 | 4.06 | [ |
Ag/WO3/P3HT∶PCBM/TiO2/FTO/ITO | 0.80 | 0.600 | 7.05 | 61.1 | 2.58 | NA | NA | [ |
1DPC/ITO/PFN/PTB7∶PC71BM/ PEDOT∶PSS | 1.24 | 0.770 | 12.25 | 55.8 | 5.20 | 23 | 1.21 | [ |
PET/Ag/PH1000/ZnO/PTB7⁃Th∶PC71BM/MoO x /(Au/Ag)/DM⁃6 | 0.92 | 0.770 | 12.70 | 65.7 | 6.40 | 12 | 0.75 | [ |
ITO/PEDOT/PTB7∶PC71BM/PC⁃Tn⁃Ag | 1.24 | 0.773 | 10.90 | 70.0 | 5.60 | 28 | 1.57 | [ |
(LiF/TeO2)4/glass/ITO/PEDOT∶PSS/PM6∶BTP⁃eC9∶L8⁃BO/ PDINN/Ag/(LiF/TeO2)8/LiF | 1.54 | 0.854 | 17.97 | 74.5 | 11.44 | 47 | 5.35 | [ |
ITO/nc⁃TiO2/P3HT∶PC61BM/MoO3/Ag/MoO3 | 0.80 | 0.595 | 4.83 | 61.2 | 1.76 | NA | NA | [ |
ITO/ZnO/PBT1⁃C⁃2Cl∶Y6/MoO3/Au | 1.46 | 0.820 | 15.71 | 67.2 | 9.10 | 40 | 3.65 | [ |
ITO/PEDOT∶PSS/PBDB⁃T∶ITIC⁃m/ZnO NPs/Sb2O3/Ag/Sb2O3 | 1.90 | 0.890 | 4.93 | 0.68 | 3.00 | 16 | 0.49 | [ |
ITO/PEDOT∶PSS/MoO3/DTDCPB/DTDCPB∶C70/C70/ Bphen/Ag/NPB/Ag | 1.94 | 0.896 | 9.81 | 55.3 | 5.15 | 25 | 1.29 | [ |
ITO/ZnO/PTB7⁃Th∶PC71BM/MoO3/Au/Ag/WO3/Ag | 0.92 | 0.787 | 17.05 | 66.6 | 8.93 | 26 | 2.28 | [ |
ITO/Hf(ACB1)4/PM6∶Y6/MoO3/Ag | 1.65 | 0.818 | 19.69 | 71.4 | 11.51 | 26 | 2.95 | [ |
Fig.8 Structures of 1DPCs, device A, device A/1DPCs(A)[33], schematic of the device structure of the ST⁃PSC(B)[34], growth diagram of the pristine S⁃Ag layer(up) and Au/Ag hybrid layer(down) on MoOx(C)[35](A) Copyright 2012, American Institute of Physics; (B) Copyright 2016, the Royal Society of Chemistry; (C) Copyright 2016, Wiley-VCH.
Fig.9 Transmittance spectra of the transparent ITO/nc⁃TiO2 cathode(the inset: the device structure of semitransparent inverted PSCs)(A)[38] and the structure of ST⁃OPVs(B)[39](A) Copyright 2009, American Institute of Physics; (B)Copyright 2020, Wiley-VCH.
Fig.10 Device architecture of microcavity⁃embedded colour⁃tuneable transparent OSCs(A)[41], schematic of hybrid⁃electrode⁃mirror microcavity⁃based ST⁃OPVs devices with PTB7⁃Th∶PC71BM as the active layer(B)[42], and structure of organic solar cell with ITO/Hf(ACB1)4 /active layer/MoO3/Ag(C)[43](A) Copyright 2014, Wiley-VCH; (B) Copyright 2019, American Chemical Society; (C) Copyright 2022, Wiley-VCH.
1 | Traverse C. J., Pandey R., Barr M. C., Lunt R. R., Nat. Energy, 2018, 3(2), 157 |
2 | Xie D., Zhang Y., Yuan X., Li Y., Huang F., Cao Y., Duan C., Adv. Funct. Mater., 2023, 33(11), 2212601 |
3 | Zhao Y., Li Z., Deger C., Wang M., Peric M., Yin Y., Meng D., Yang W., Wang X., Xing Q., Chang B., Scott E. G., Zhou Y., Zhang E., Zheng R., Bian J., Shi Y., Yavuz I., Wei K. H., Houk K. N., Yang Y., Nat Sustain, 2023, 6, 539—548 |
4 | Huang J., Lu Z., He J., Hu H., Liang Q., Liu K., Ren Z., Zhang Y., Yu H., Zheng Z., Li G., Energy Environ. Sci., 2023, 16(3), 1251—1263 |
5 | Wu X., Liu S., Li H., Meng X., Hu X., Guo R., Chen Y., Adv. Opt. Mater., 2022, 10(23), 2201803 |
6 | Wang D., Li Y., Zhou G., Gu E., Xia R., Yan B., Yao J., Zhu H., Lu X., Yip H. L., Chen H., Li C. Z., Energy Environ. Sci, 2022, 15(6), 2629—2637 |
7 | Liu S., Li H., Wu X., Chen D., Zhang L., Meng X., Tan L., Hu X., Chen Y., Adv. Mater., 2022, 34(23), 2201604 |
8 | Li Y., Huang X., Sheriff H. K. M., Forrest S. R., Nat. Rev. Mater., 2022, 8(3), 186—201 |
9 | Liu W., Sun S., Zhou L., Cui Y., Zhang W., Hou,J., Liu F., Xu,S., Zhu X., Angew Chem. Int. Ed., 2022, 61(19), e202116111 |
10 | Wei Y., Chen Z., Lu G., Yu N., Li C., Gao J., Gu X., Hao X., Lu G., Tang Z., Zhang J., Wei Z., Zhang X., Huang H., Adv. Mater., 2022, 34(33), 2204718 |
11 | Zhou M., Liao C., Duan Y., Xu X., Yu L., Li R., Peng Q., Adv. Mater., 2023, 35(6), 2208279 |
12 | Wang J., Wang Y., Bi P., Chen Z., Qiao J., Li J., Wang W., Zheng Z., Zhang S., Hao X., Hou J., Adv. Mater., 2023, 35, 2301583 |
13 | Li D., Deng N., Fu Y., Guo C., Zhou B., Wang L., Zhou J., Liu D., Li W., Wang K., Sun Y., Wang T., Adv. Mater., 2023, 35(6), 2208211 |
14 | Han C., Wang,J., Zhang S., Chen L., Bi F., Wang J., Yang C., Wang P., Li Y., Bao X., Adv. Mater., 2023, 35(10), 2208986 |
15 | Zhu L., Zhang M., Xu J., Li C., Yan J., Zhou G., Zhong W., Hao T., Song J., Xue X., Zhou Z., Zeng R., Zhu H., Chen C. C., MacKenzie R. C. I., Zou Y., Nelson J., Zhang Y., Sun Y., Liu F., Nat. Mater., 2022, 21(6), 656—663 |
16 | Sun R., Wu Y., Yang X., Gao Y., Chen Z., Li K., Qiao J., Wang T., Guo,J., Liu C., Hao X., Zhu H., Min J., Adv. Mater., 2022, 34(26), 2110147 |
17 | Meng L., Liang H., Song G., Li M., Huang Y., Jiang C., Zhang K., Huang F., Yao Z., Li C., Wan X., Chen Y., Sci. China: Chem., 2023, 66, 808—815 |
18 | Zheng Z., Wang J., Bi P., Ren J., Wang Y., Yang Y., Liu X., Zhang S., Hou J., Joule, 2022, 6(1), 171—184 |
19 | Huang X., Cheng Y., Fang Y., Zhang L., Hu X., Jeong S. Y., Zhang H., Woo H. Y., Wu F., Chen L., Energy Environ. Sci., 2022, 15(11), 4776—4788 |
20 | Meng R., Jiang Q., Liu D., NPJ. Flex. Electron, 2022, 6(1), 39 |
21 | Guan S., Li Y., Yan K., Fu W., Zuo L., Chen H., Adv. Mater., 2022, 34(41), 2205844 |
22 | Yuan X., Sun R., Wu Y., Wang T., Wang Y., Wang W., Yu Y., Guo J., Wu Q., Min J., Adv. Funct. Mater., 2022, 32(22), 2200107 |
23 | Zhao Y., Cheng P., Yang H., Wang M., Meng D., Zhu Y., Zheng R., Li T., Zhang A., Tan S., Huang T., Bian J., Zhan X., Weiss P. S., Yang Y., ACS Nano, 2022, 16(1), 1231—1238 |
24 | Wang T., Sun R., Xu S., Guo J., Wang W., Guo J., Jiao X., Wang J., Jia S., Zhu X., Li Y., Min J., J. Mater. Chem. A, 2019, 7(23), 14070—14078 |
25 | Luo M., Zhao C., Yuan J., Hai J., Cai F., Hu Y., Peng H., Bai Y., Tan Z., Zou Y., Mater. Chem. Front, 2019, 3(11), 2483—2490 |
26 | Hu Z., Wang J., Ma X., Gao J., Xu C.., Wang X., Zhang X., Wang Z., Zhang F., J. Mater. Chem. A, 2021, 9, 6797 |
27 | Li Y., Lin J. D., Ch, X., Qu,Y., Liu F., Liao L. S., Forrest S. R., J. Am. Chem. Soc., 2017, 139(47), 17114—17119 |
28 | Jia B., Dai S., Ke Z., Yan C., Ma W., Zhan X., Chem. Mater., 2018, 30(1), 239—245 |
29 | Li T., Dai S., Ke Z., Yang L., Wang J., Yan C., Ma W., Zhan X., Adv. Mater., 2018, 30(10), 1705969 |
30 | Huang H., Li X., Zhong L., Qiu B., Yang Y., Zhang Z. G., Zhang Z., Li Y., J. Mater. Chem. A, 2018, 6(11), 4670—4677 |
31 | Li Y., Guo X., Peng Z., Qu B., Yan H., Ade H., Zhang M., Forrest S. R., Proc. Natl. Acad. Sci. U.S.A, 2020, 117(35), 21147—21154 |
32 | Li Y., He C., Zuo L., Zhao F., Zhan L., Li X., Xia R., Yip H., Li C., Liu X., Chen H., Adv. Energ. Mater., 2021, 11(11), 2003408 |
33 | Yu W., Shen L., Long Y., Guo W., Meng F., Ruan S., Jia X., Ma H., Chen W., Appl. Phys. Lett., 2012, 101(15), 153307 |
34 | Zhang Y., Peng Z., Cai C., Liu Z., Lin Y., Zheng W., Yang J., Hou L., Cao Y., J. Mater. Chem. A, 2016, 4(30), 11821—11828 |
35 | Xu G., Shen L., Cui C., Wen S., Xue R., Chen W., Chen H., Zhang J., Li H., Li Y., Li Y., Adv. Funct. Mater., 2017, 27(15), 1605908 |
36 | Betancur R., Romero⁃Gomez P., Martinez⁃Otero A., Elias X., Maymó M., Martorell J., Nat. Photon, 2013, 7(12), 995—1000 |
37 | Liu X., Zhong Z., Zhu R., Yu J., Li G., Joule, 2022, 6(8), 1918—1930 |
38 | Tao C., Xie G., Liu C., Zhang X., Dong W., Meng F., Kong X., Shen L., Ruan S., Chen W., Appl. Phys. Lett., 2009, 95, 053303 |
39 | Xie Y., Cai Y., Zhu L., Xia R., Ye L., Feng X., Yip H., Liu F., Lu G., Tan S., Sun Y., Adv. Funct. Mater., 2020, 30(28), 2002181 |
40 | Song S., Cho H. W., Jeong J., Yoon Y. J., Park S. Y., Song S., Woo B. H., Jun Y. C., Walker B., Kim J. Y., Sol. RRL, 2020, 4(9), 2000201 |
41 | Chen Y. H., Chen C. W., Huang Z. Y., Lin W. C., Lin L. Y., Lin F., Wong K. T., Lin H. W., Adv. Mater., 2014, 26(7), 1129—1134 |
42 | Zhong J., Xiao Z., Liang W., Wu Y., Ye Q., Xu H., Deng H., Shen L., Feng X., Long Y., ACS Appl. Mater. Interfaces, 2019, 11(51), 47992—48001 |
43 | Bai Y., Han F., Shi R., Wang F., Jiang S., Wang J., Tan Z., Sol RRL, 2022, 6(8), 2200174 |
44 | Lunt R. R., Appl. Phys. Lett., 2012, 101(4), 043902 |
45 | Liu T., Burlingame Q. C., Ivancevic M. R., Liu X., Hu J., Rand B. P., Loo Y. L., Adv. Energy Mater. 2023, 13, 2300046 |
46 | Liu F., Zhou Z., Zhang C., Zhang J., Hu Q., Vergote T., Liu F., Russell T. P., Zhu X., Adv. Mater., 2017, 29(21), 1606574 |
47 | Liu W., Sun S., Xu S., Zhang H., Zheng Y., Wei Z., Zhu X., Adv. Mater., 2022, 34(18), 2200337 |
48 | Dou L., You J., Yang J., Chen C. C., He Y., Murase S., Moriarty T., Emery K., Li G., Yang Y., Nature Photon, 2012, 6(3), 180—185 |
49 | Chen K. S., Salinas J. F., Yip H. L., Huo L., Hou J., Jen A. K. Y., Energy Environ. Sci., 2012, 5(11), 9551—9557 |
50 | Zhang Y., Zou J., Cheuh C. C., Yip H. L., Jen A. K. Y., Macromolecules, 2012, 45(13), 5427—5435 |
51 | Dou L., Chang W. H., Gao J., Chen C. C., You J., Yang Y., Adv. Mater., 2013, 25(6), 825—831 |
52 | Jeon I., Delacou C., Kaskela A., Kauppinen E. I., Maruyama S., Matsuo Y., Sci. Rep., 2016, 6(1), 31348 |
53 | Ji G., Wang Y., Luo Q., Han K., Xie M., Zhang L., Wu N., Lin J., Xiao S., Li Y. Q., Luo L. Q., Ma C. Q., ACS Appl. Mater. Interfaces, 2018, 10(1), 943—954 |
54 | Wong Y. Q., Meng H. F., Wong H. Y., Tan C. S., Wu C. Y., Tsai P. T., Chang C. Y., Horng S. F., Zan H. W., Org. Electron, 2017, 43, 196—206 |
55 | Lu J. H., Lin Y. H., Jiang B. H., Yeh C. H., Kao J. C., Chen C. P., Adv. Funct. Mater., 2018, 28(7), 1703398 |
56 | Duan L., Yi H., Wang Z., Zhang Y., Haque F., Sang B., Deng R., Uddin A., Sustain. Energ. Fuels, 2019, 3(9), 2456—2463 |
57 | Song J., Li C., Ye L., Koh C., Cai Y., Wei D., Woo H. Y., Sun Y., J. Mater. Chem. A, 2018, 6(39), 18847—18852 |
58 | Liu J., Wang Y., Jiang P., Tu G., ACS Omega, 2020, 5(3), 1336—1345 |
59 | Xiao Z., Jia X., Ding L., Sci. Bull., 2017, 62(23), 1562—1564 |
60 | Zhang M., Zhu L., Hao T., Zhou G., Qiu C., Zhao Z., Hartmann N., Xiao B., Zou Y., Feng W., Zhu H., Zhang M., Zhang Y., Li Y., Russell T. P., Liu F., Adv. Mater., 2021, 33(18), 2007177 |
61 | Dai S., Zhan X., Adv. Energy Mater., 2018, 8(21), 1800002 |
62 | Xu X., Li K., Prog. Chem., 2021, 33(2), 165—178 |
63 | Wei Q., Liu W., Leclerc M., Yuan J., Chen H., Zou Y., Sci. China Chem., 2020, 63(10), 1352—1366 |
64 | Zhang G., Chen X. K., Xiao J., Chow P. C. Y., Ren M., Kupgan G., Jiao X., Chan C. C. S., Du X., Xia R., Chen Z., Yuan J., Zhang Y., Zhang S., Liu Y., Zou Y., Yan H., Wong K. S., Coropceanu,V., Li N., Brabec C. J., Bredas J. L., Yip H. L., Cao Y., Nat. Commun., 2020, 11(1), 3943 |
65 | Yuan J., Zhang Y., Zhou L., Zhang G., Yip H. L., Lau T. K., Lu X., Zhu C., Peng H., Johnson P. A., Leclerc M., CaoY., Ulanski J., Li Y., Zou Y., Joule, 2019, 3(4), 1140—1151 |
66 | Guo Q., Guo Q., Geng Y., Tang A., Zhang M., Du M., Sun X., Zhou E., Mater. Chem. Front, 2021, 5(8), 3257—3280 |
67 | Yuan J., Zou Y., Org. Electron, 2022, 102, 106436 |
68 | Cheng H. W., Mohapatra A., Chang Y. M., Liao C. Y., Hsiao Y. T., Chen C. H., Lin Y. C., Huang S. Y., Chang B., Yang Y., Chu C. W., Wei K. H., ACS Appl. Mater. Interfaces, 2021, 13(23), 27227—27236 |
69 | Li X., Xia R., Yan K., Ren J., Yip H. L., Li C. Z., Chen H., ACS Energy Lett., 2020, 5(10), 3115—3123 |
70 | Wang W., Yan C., Lau T., Wang J., Liu K., Fan Y., Lu X., Zhan X., Adv. Mater., 2017, 29(31), 1701308 |
71 | Cui Y., Yang C., Yao H., Zhu J., Wang Y., Jia G., Gao F., Hou J., Adv. Mater., 2017, 29(43), 1703080 |
72 | Song W., Fanady B., Peng R., Hong L., Wu L., Zhang W., Yan T., Wu T., Chen S., Ge Z., Adv. Energ. Mater., 2020, 10(15), 2000136 |
73 | Wang D., Liu H., Li Y., Zhou G., Zhan L., Zhu H., Lu X., Chen H., Li C. Z., Joule, 2021, 5(4), 945—957 |
74 | Yao M., Li T., Long Y., Shen P., Wang G., Li C., Liu J., Guo W., Wang Y., Shen L., Zhan X., Sci. Bull., 2020, 65(3), 217—224 |
75 | Zhang N., Jiang T., Guo C., Qiao L., Ji Q., Yin L., Yu L., Murto P., Xu F., Nano Energ., 2020, 77, 105111 |
[1] | 王嘉睿, 于润楠, 谭占鳌. 金属配合物在有机太阳电池中的应用进展[J]. 高等学校化学学报, 2023, 44(9): 20230150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||