高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (10): 3160.doi: 10.7503/cjcu20210365

• 物理化学 • 上一篇    下一篇

ZnIn2S4/g-C3N4复合材料的制备及可见光催化制氢性能

孙亚光, 张含烟, 明涛, 徐宝彤, 高雨, 丁茯, 徐振和()   

  1. 沈阳化工大学无机分子基辽宁省重点实验室, 沈阳 110142
  • 收稿日期:2021-05-26 出版日期:2021-10-10 发布日期:2021-10-10
  • 通讯作者: 徐振和 E-mail:xuzh056@163.com
  • 基金资助:
    国家自然科学基金(51402198);辽宁省“兴辽英才计划”项目(XLYC2007166)

Synthesis of ZnIn2S4/g-C3N4 Nanocomposites with Efficient Photocatalytic H2 Generation Activity by a Simple Hydrothermal Method

SUN Yaguang, ZHANG Hanyan, MING Tao, XU Baotong, GAO Yu, DING Fu, XU Zhenhe()   

  1. Key Laboratory of Inorgnic Molecule?based Chemistry of Liaoning Province,Shenyang University of Chemical Technology,Shenyang 110142,China
  • Received:2021-05-26 Online:2021-10-10 Published:2021-10-10
  • Contact: XU Zhenhe E-mail:xuzh056@163.com
  • Supported by:
    the National Natural Science Foundation of China(51402198);the Liaoning Revitalization Talents Program, China(XLYC2007166)

摘要:

采用水热方法制备了ZnIn2S4/g-C3N4复合材料, 并通过X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)、 紫外-可见漫反射光谱(UV-Vis DRS)、 透射电子显微镜(TEM)和荧光光谱(PL)等手段对其结构和性能进行表征. 结果表明, 当ZnIn2S4的负载量为20%(质量分数)时, 复合材料表现出最佳的光催化制氢性能, 制氢速率可达到637.08 μmol·g-1·h-1, 分别为纯ZnIn2S4和纯g-C3N4的4倍和37倍. 其原因在于ZnIn2S4和g-C3N4之间具有紧密的异质结结构, 两者有效的结合改善了组分的能带匹配和界面电荷转移, 从而大幅增强了载流子的分离和迁移, 进而提高光催化的性能.

关键词: 光催化制氢, 石墨相氮化碳, 硫代铟酸锌

Abstract:

ZnIn2S4/g-C3N4 composites were prepared by a simple hydrothermal method and characterized by means of X-ray diffraction(XRD), Fourier transforms infrared spectroscopy(FTIR), UV-Vis diffuse reflectance spectroscopy(UV-Vis DRS), transmission electron microscopy(TEM), and fluorescence spectroscopy(PL). The results show that when the loading capacity of ZnIn2S4 is 20%(mass fraction), the composite shows the best performance of photocatalytic hydrogen production, and the rate of hydrogen production can reach 637.08 μmol ·g-1·h-1, which is 4 times and 37 times of pure ZnIn2S4 and pure g-C3N4, respectively. The reason is that ZnIn2S4/g-C3N4 has a tight heterojunction interface, which improves the energy band matching and interfacial charge transfer of the components, thus effectively enhancing the separation and transport of charge carriers, and improving the photocatalytic performance.

Key words: Photocatalytic hydrogen evolution, g-C3N4, ZnIn2S4

中图分类号: 

TrendMD: