Chem. J. Chinese Universities ›› 2026, Vol. 47 ›› Issue (1): 20250280.doi: 10.7503/cjcu20250280
• Review • Previous Articles Next Articles
Received:2025-09-29
Online:2026-01-10
Published:2025-12-02
Contact:
LU Xiaofeng
E-mail:xflu@jlu.edu.cn
Supported by:CLC Number:
TrendMD:
YIN Yongting, LU Xiaofeng. Electrospun Nanofibrous Transition Metal-based Bifunctional Electrocatalysts Toward Overall Water Splitting[J]. Chem. J. Chinese Universities, 2026, 47(1): 20250280.
Fig.2 Scheme of the procedure to prepare the Co⁃Ir nanofibrous catalyst(A), SEM image(B), TEM image(C), HRTEM image(D) and SAED pattern(E) of the Co⁃Ir⁃600 NFs, LSV curves of varied electrocatalysts for OER(F), comparison of OER activity for varied catalysts(G), Tafel slopes of varied catalysts for OER(H), LSV curves(I) and Tafel slopes(J) of varied catalysts for HER and i⁃t curve and the LSV curves before and after 1000 CV cycles(inset) of Co⁃Ir⁃600 NFs for HER(K)[23]
Fig.3 Schematic illustration of the alkaline two⁃electrode OWS system(A), LSV curves without iR correction(B) and power consumption for H2 generation at various current densities in two electrolysis systems(C), comparison of voltages at 10 mA/cm2 among various electrolysis systems(D), practical and theoretical O₂(E) and H₂(F) production as well as the FEs of the OWS system, stability test and the gas bubbles at the electrodes in the electrolyte(inset) of RuCoOₓ⁃300||Ru2CoOₓ⁃300 and Pt/C||RuO2 electrolysis systems(G)[26]
Fig.4 Illustration of the preparation process of Co⁃C/NiFeS NFs(A), SEM(B), TEM(C), HRTEM(D) images of Co⁃C/NiFeS NFs, Raman spectra of Co⁃C and Co⁃C/NiFeS NFs(E), LSV curves of varied electrocatalysts for OER(F), collections of overpotentials at 10 and 80 mA/cm2(G), OER durability at around 10 mA/cm2(H) of Co⁃C/NiFeS NFs, LSV curves(I) and Tafel slopes(J) of varied electrocatalysts for HER and i⁃t curve and the LSV curves before and after 2000 CV cycles(inset) of Co⁃C/NiFeS NFs for HER(K)[37]
Fig.5 DFT calculation results of WC1⁃x /Mo2C, Mo2C and WC1⁃x [43](A) Calculated work function; (B) deformation charge density of catalyst; (C) calculated adsorption and dissociation energies of H2O on the catalysts; (D) computed Gibbs free energy; (E) proposed pathways for OER; (F) adsorption free energy of oxygen⁃containing intermediates on the catalysts; (G) the d⁃band centers of Mo and W; (H) schematic diagram illustrating the correlation between the d⁃band center and adsorption strength; (I) comparison of the free energy of key intermediates versusd⁃band center positions. Copyright 2024, John Wiley and Sons.
Fig.6 Charge density difference of Co6Mo6C⁃Ir NFs catalyst(A), ΔGH* at varied adsorption sites(B), OER overpotentials on Co6Mo6C⁃Ir NFs and Bader charge of various active sites(C), polarization curves of two electrolyzers(D), FEs of the two electrolyzers measured at 200 mA/cm2(E), the ohmic and activation overpotential analysis for Co6Mo6C⁃Ir⁃2 NFs||Co6Mo6C⁃Ir⁃2 NFs system(F) and the long⁃term stability test and the vigorous generation of H2 and O2 at the electrodes(insets) of two electrolyzers(G)[55]
Fig.7 Adsorption sites for H* on Mn⁃doped RuO2(A), the calculated ΔGH* at varied adsorption sites(B), schematic illustration of the formed fully filled bonding orbital and a partially filled antibonding orbital for H* adsorption(C), free energy diagram of OER at the top site of Mn in Mn⁃doped RuO2(D), potential⁃dependent Raman spectra of RuO2 NFs Mn⁃doped RuO2 NFs(E, F), LSV curves(G) and FEs(H) of various electrolysis systems, digital photograph for generating H2 and O2 bubbles at cathode and anode(I) and the stability test of various electrolysis systems(J)[61]
Fig.8 SEM image(A), TEM image(B), magnified spherical aberration⁃corrected HAADF⁃STEM image(C) and corresponding line scanning intensity profile of Cr, B⁃doped RuO2 NFs(D), XANES spectra for Ru K⁃edge(E) and Cr K⁃edge(F) for various samples, wavelet⁃transform EXAFS analysis at the Ru K⁃edge(G) and the Cr K⁃edge(H) of Cr, B⁃doped RuO2 NFs, operando DEMS spectra for Cr, B⁃doped RuO2 NFs using H218O solvent(I) and 18O⁃labeled Cr, B⁃doped RuO2 NFs with H216O solvent(J), schematic diagram of AEM mechanism for OER(K), free energy diagram of OER on various Ru sites(L) and correlation between the calculated negative overpotential(-ηOER) and the descriptor of ΔGO*-ΔGOH* for various catalysts(M)[67]
| [1] | Zhang J., Fu X., Kwon S., Chen K., Liu X., Yang J., Sun H., Wang Y., Uchiyama T., Uchimoto Y., Li S., Li Y., Fan X., Chen G., Xia F., Wu J., Li Y., Yue Q., Qiao L., Su D., Zhou H., Goddard W., Kang Y., Science, 2025, 387, 48—55 |
| [2] | Xia T., Ren Q., Yang J., Li Z., Shao M., Duan X., Chem. Res. Chinese Universities, 2024, 40, 577—589 |
| [3] | Quan L., Jiang H., Mei G., Sun Y., You B., Chem. Rev., 2024, 124, 3694—3812 |
| [4] | Zhou Y., Yu W., Liu H., Fan R., Han G., Dong B., Chai Y., EcoEnergy, 2023, 1, 425—436 |
| [5] | Li W., Wang C., Lu X., J. Mater. Chem. A, 2021, 9, 3786—3827 |
| [6] | Cao X., Wang T., Jiao L., Adv. Fiber Mater., 2021, 3, 210—228 |
| [7] | Song W., Li M., Wang C., Lu X., Carbon Energ., 2021, 3, 101—128 |
| [8] | Song N., Ren S., Zhang Y., Wang C., Lu X., Adv. Funct. Mater., 2022, 32, 2204751 |
| [9] | Shi B., Lu X., Chem. Sci., 2025, 16, 17568—17594 |
| [10] | Wang C., Wang W., Qi H., Dai Y., Jiang S., Ding B., Wang X., Li C., Zeng J., Wu T., Li H., Wang Y., Zhao Y., Wang W., Li Z., Mo X., Hou H., Dong L., Ma H., Liu Y., Su C., Bai J., Wu W., Guo G., Nie G., Wang N., Zhu H., Bai J., Fang J., Liang D., Ba Z., Han G., Lu X., Wang K., Zhang X., Kang W., Deng N., Hu W., Chen W., Zhang X., Yang D., Wang F., Bian Y., Liu Z., Zhang L., Li X., Li L., Li Y., Huang H., Jia X., Li X., Yang D., Jin X., Li S., Zhang X., Tang N., Hao R., Tian F., Mai L., Wei Y., Xue J., Prog. Mater. Sci., 2025, 154, 101494 |
| [11] | Zhu Y., Tang Z., Yuan L., Li B., Shao Z., Guo W., Chem. Soc. Rev., 2025, 54, 1027—1092 |
| [12] | Fu X., Shi R., Jiao S., Li M., Li Q., J. Energy Chem., 2022, 70, 129—153 |
| [13] | Lu X., Li M., Wang H., Wang C., Inorg. Chem. Front., 2019, 6, 3012—3040 |
| [14] | Ni J., Shi Z., Wang Y., Yang J., Wu H., Wang P., Xiao M., Liu C., Xing W., eScience, 2025, 5, 100295 |
| [15] | Gao X., Chen Y., Wang Y., Zhao L., Zhao X., Du J., Wu H., Chen A., Nano-Micro Lett., 2024, 16, 237 |
| [16] | Ghouri Z. K., Badreldin A., Ehaled K., Kumar D., Youssef K., Abdel-Wahab A., J. Ind. Eng. Chem., 2021, 96, 243—253 |
| [17] | Chen J., Chen J., Yu D., Zhang M., Zhu H., Du M., Electrochim. Acta, 2017, 246, 17—26 |
| [18] | Li T., Li S., Liu Q., Yin J., Sun D., Zhang M., Xu L., Tang Y., Zhang Y., Adv. Sci., 2020, 7, 1902371 |
| [19] | Liu X., Zhang M., Yang T., Wan L., Zhu H., Wang S., Du M., Mater. Des., 2016, 109, 162—170 |
| [20] | Gebremariam T. T., Chen F., Jin Y., Wang Q., Wang J., Wang J., Catal. Sci. Technol., 2019, 9, 2532—2542 |
| [21] | Wang L., Wang C., Mu Y., Fan J., Yang X., Yu C., Guo B., Zeng G., Fuel, 2025, 391, 134800 |
| [22] | Kwon T., Yu A., Kim S. J.,Kim M. H., Lee C., Lee Y., Appl. Surf. Sci., 2021, 563, 150293 |
| [23] | Li W., Li M., Wang C., Lu X., Sci. China Mater., 2023, 66(3), 1024—1032 |
| [24] | Zhang B., Shan J., Yu J., Wang W., Li W., Li N., Li Y., Int. J. Hydrog. Energy, 2021, 46, 8871—8884 |
| [25] | Hua B., Li M., Zhang Y., Sun Y., Luo J., Adv. Energy Mater., 2017, 7, 1700666 |
| [26] | Yu X., Qi R., Zhang L., Deng L., Zhong M., Chen Z., Lu X., Acta Mater., 2025, 294, 121165 |
| [27] | Ding M., Wei Z., Zhao W., Lu Q., Lu C., Zhou M., Liu D., Yang H., Green Chem., 2024, 26, 7789—7798 |
| [28] | Cao M., Li B., Cao Y., Li Y., Tian R., Shen Q., Xie W., Gu W., ACS Appl. Mater. Interfaces, 2025, 17, 15259—15273 |
| [29] | Huang T., Xu G., Ding H., Liu X., Zhang L., Sep. Purif. Technol., 2025, 354, 129094. |
| [30] | Huang T., Xu G., Ding H., Zhang L., Wei B., Liu X., J. Colloid Interface Sci., 2022, 625, 956—964 |
| [31] | Chang X., Yan J., Ding X., Jia Y., Li S., Zhang M., Nanomaterials, 2022, 12, 3886 |
| [32] | Xie X., Liu J., Gu C., Li J., Zhao Y., Liu C., J. Energy Chem., 2022, 64, 503—510 |
| [33] | Chen J., Huang F., Ke S., Shen J., Li Y., Zheng F., Li S., Dalton Trans., 2022, 51, 5168—5174 |
| [34] | Liu X., Xu G., Ding H., Zhang L., Huang T., Int. J. Hydrogen Energy, 2023, 48, 35064—35074 |
| [35] | Meng D., Ran S., Gao L., Zhang Y., San X., Zhang L., Li R., Jin Q., Chem. Res. Chinese Universities, 2024, 40, 490—498 |
| [36] | Wang F., Xu L., Wang P., Zhang Y., Electrochim. Acta, 2019, 306, 437—445 |
| [37] | Li W., Zhong M., Chen X., Ren S., Yan S., Wang C., Lu X., Sci. China Mater., 2023, 66, 2235—2245 |
| [38] | Shah M., Jang G., Zhang K., Park J., EcoEnergy, 2023, 1, 344—374 |
| [39] | Xu S., Sun X., Cui W., Bai J., Li C., Int. J. Hydrogen Energy, 2024, 49, 309—321 |
| [40] | Zhang J., Sun X., Peng W., Lu G., Sun S., Xu Y., Fang C., Li Q., Han J., ChemCatChem, 2020, 12, 3737—3745 |
| [41] | Li M., Zhu Y., Wang H., Wang C., Pinna N., Lu X., Adv. Energy Mater., 2019, 9, 1803185 |
| [42] | Zhang S., Le F., Jia W., Yang X., Hu P., Wu X., Shu W., Xie Y., Xiao W., Jia D., Small Methods, 2025, 9, 2401103 |
| [43] | Zhang W., Yang L., Li Z., Nie G., Cao X., Fang Z., Wang X., Ramakrishna S., Long Y., Jiao L., Angew. Chem. Int. Ed., 2024, 63, e202400888 |
| [44] | Zhang X., Liang Z., Zhang X., Guo Q., Xie Y., Wang L., Fu H., Chin. Chem. Lett., 2025, 36, 109935 |
| [45] | Kumar M. R., Thiruvengadam D., Kumar K. S., Rajan K., Jayabharathi J., Padmavathy M., Energy Fuels, 2025, 39, 6605—6619 |
| [46] | Xia M., Shi B., Li W., Yu X., Qi R., Mu M., Wang C., Lu X., J. Colloid Interface Sci., 2026, 702, 138880 |
| [47] | Zhong M., Yan S., Xu J., Wang C., Lu X., Inorg. Chem. Front., 2022, 9, 4881—4891 |
| [48] | Nagappan S., Minhas H., Urkude R. R., Pathak B., Kundu S., Small, 2025, 21, 2500081 |
| [49] | Nagappan S., Jayan R., Rajagopal N., Krishnan A., Islam M. M., Kundu S., Small, 2024, 20, 2403908 |
| [50] | Gong T., Zhang J., Liu Y., Hou L., Deng J., Yuan C., Chem. Eng. J., 2023, 451, 139025 |
| [51] | Cui W., Sun X., Xu S., Li C., Bai J., Sustain. Energy Fuels, 2024, 8, 4962 |
| [52] | Zhang Y., Shi W., Bo L., Shen Y., Ji X., Xia L., Guan X., Wang Y., Tong J., Chem. Eng. J., 2022, 431, 134188 |
| [53] | Thiruvengadam D., Nithiasri R., Sangamithirai M., Kumar K. S., Jayabharathi J., ACS Appl. Energy Mater., 2025, 8, 1266—1281 |
| [54] | Li T., Yin J., Sun D., Zhang M., Pang H., Xu L., Zhang Y., Yang J., Tang Y., Xue J., Small, 2022, 18, 2106592 |
| [55] | Li W., Guo W., Zhang L., Zhong M., Ren S., Yu G., Wang C., Chen W., Lu X., Chem. Sci., 2024, 15, 11890—11901 |
| [56] | Zhao X., Liu M., Shang Z., Lu Q., Han X., Ji X., Zhang H., Energy Fuels, 2024, 38, 17939—17947 |
| [57] | Zhu H., Zhang J., Yanzhang R., Du M., Wang Q., Gao G., Wu J., Wu G., Zhang M., Liu B., Yao J., Zhang X., Adv. Mater., 2015, 27, 4752—4759 |
| [58] | Wang T., Shi Y., Fei J., Zhu J., Song L., Li C., Zhan T., Lai J., Wang L., App. Catal. B: Environ., 2024, 358, 124367 |
| [59] | Chae S. H., Muthurasu A., Kim T., Kim J. S.,Khil M. S., Lee M., Kim H., Lee J. Y.,Kim H. Y., Appl. Catal. B: Environ., 2021, 293, 120209 |
| [60] | Yu X., Zhang L., Qi R., Xia M., Wang Y., Zhong M., Song W., Lu X., J. Colloid Interface Sci., 2025, 699, 138225 |
| [61] | Li W., Liu R., Yu G., Chen X., Yan S., Ren S., Chen J., Chen W., Wang C., Lu X., Small, 2024, 20, 2307164 |
| [62] | Zhang L., Li W., Ren S., Song W., Wang C., Lu X., Adv. Energy Mater., 2025, 15, 2403136 |
| [63] | Surendran S., Jesudass S. C., Janani G., Kim J. Y., Lim Y., Park J., Han M. K.,Cho I. S., Sim U., Adv. Mater. Technol., 2023, 8, 2200572 |
| [64] | Wang X., Chen X., Huang M., Liu Z., Int. J. Hydrogen Energy, 2024, 63, 556—565 |
| [65] | Li W., Wang C., Lu X., Nano Lett., 2024, 24, 11779—11792 |
| [66] | Li Y., Zhou B., Ding W., Luo Q., Wang L., Kim I., Zhang T., Ji D., Qin X., Appl. Catal. B: Environ. Energy, 2025, 380, 125776 |
| [67] | Li W., Zhang L., Ma L., Wang J., Qi R., Pang Y., Xu C., Wang C., Gao M., Lu X., Nano Lett., 2025, 25, 443—452 |
| [68] | Yu J., Li J., Xu C., Li Q., Liu Q., Liu J., Chen R., Zhu J., Wang J., Nano Energy, 2022, 98, 107266 |
| [69] | Li J., Zhu J., Jia Z., Li R., Yu J., Chem. Asian J., 2023, 18, e202300393 |
| [70] | Wang Y., Jiang Q., Ren S., Xu J., Wang Y., Zhong M., Lu X., Adv. Mater., 2025, 37, 2504922 |
| [71] | Xu M., Xu J., Zhang L., Yu X., Ren S., Zhang S., Gao M., Zhong M., Lu X., Adv. Energy Mater., 2025, 15, e01970 |
| [72] | Zhong M., Xu M., Ren S., Li W., Wang C., Gao M., Lu X., Energy Environ. Sci., 2024, 17, 1984—1996 |
| [1] | CHEN Xin, LIU Jingyuan, YU Jing. Preparation of Porous Carbon Nanofiber Loaded Copper-platinum Alloy Catalysts and Their Electrocatalytic Hydrogen Evolution Performance [J]. Chem. J. Chinese Universities, 2024, 45(6): 20240042. |
| [2] | CAO Tieping, LI Yuejun, SUN Dawei. Construction of Double S-scheme YVO4/TiO2/BiVO4 Heterojunction and Its Photocatalytic CO2 Reduction Performance [J]. Chem. J. Chinese Universities, 2024, 45(12): 20240298. |
| [3] | HU Shiying, SHEN Jiayan, HAN Junshan, HAO Tingting, LI Xing. Preparation of CoO Nanoparticles/Hollow Graphene Nanofiber Composites and Its Electrochemical Performances [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220462. |
| [4] | LI Xiaochuan, TANG Mengke, ZHU Jintuo, HE Xinjian, XU Huan. Interfacial Stereocomplexation of Electroactive Poly(lactic acid) Nanofibrous Membranes for Efficient Filtration of Airborne PMs [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230311. |
| [5] | GAO Chong, ZHOU Quan, YANG Fan, REN Ruipeng, LYU Yongkang. Preparation of Microcapsular Polycaprolactone Nanofibers by Emulsion Electrospinning and Their Protein Encapsulation [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230199. |
| [6] | LI Huaike, YUE Guichu, XIE Haiyun, LIU Jing, GAO Songwei, HOU Lanlan, LI Shuai, MIAO Beibei, WANG Nyu, BAI Jie, CUI Zhimin, ZHAO Yong. Application of Electrospun Hollow Nanofibers in Catalysis [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220625. |
| [7] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
| [8] | ZHANG Hongwei, CHEN Wen, ZHAO Meiqi, MA Chao, HAN Yunhu. Research Progress of Single Atom Catalysts in Electrochemistry [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220129. |
| [9] | JI Tianyi, LIU Xiaoxu, ZHAO Jiupeng, LI Yao. Synthesis and Lithium-storage Characteristics of Three-dimensional Cross-linked Graphene Nanofibers † [J]. Chem. J. Chinese Universities, 2020, 41(4): 821. |
| [10] | WANG Xia, LIU Yanji, JIA Yongfeng, JI Lei, HU Quanli, DUAN Limei, LIU Jinghai. Preparative Chemistry of N-containing Porous Carbon Nanofibers for Capacity Improvement in Lithium-sulfur Battery † [J]. Chem. J. Chinese Universities, 2020, 41(4): 829. |
| [11] | QIN Chunping, WANG Xianliu, TANG Han, YI Bingcheng, LIU Chang, ZHANG Yanzhong. Osteogenesis-promoting Effects of the Electrospun Nanofibers Containing Decellularized Bone Matrix † [J]. Chem. J. Chinese Universities, 2020, 41(4): 780. |
| [12] | HAN Zhiying,LI Youji,CHEN Feitai,TANG Senpei,WANG Peng. Preparation of ZnO/Ag2O Nanofibers by Coaxial Electrospinning and Study of Their Photocatalytic Properties † [J]. Chem. J. Chinese Universities, 2020, 41(2): 308. |
| [13] | WANG Yongpeng,XU Zibo,LIU Mengzhu,ZHANG Haibo,JIANG Zhenhua. Non-enzymatic Glucose Sensor Based on the Electrospun Porous Foamy Copper Oxides Micro-nanofibers† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1310. |
| [14] | CAI Jiao,YU Qiongwei,HE Xiaomei,XU Jing,DING Qiong,FENG Yuqi. Preparation of SiW11 Incorporated SiO2 Nanofibers(SiW11/SiO2) and Its Application in the Analysis of Polyamines in Arabidopsis† [J]. Chem. J. Chinese Universities, 2019, 40(5): 901. |
| [15] | ZHAO Yuxuan,CHEN Yanjun,PAN Guxin,WANG Chang,PENG Zhenbo,SUN Zongxu,LIANG Yongri,SHI Qisong. Preparation and Performance of Novel Tb-PEG+Eu-PEG/PANI/PAN Luminescent-electrical-phase Change Composite Fibers by Electrospinning† [J]. Chem. J. Chinese Universities, 2019, 40(4): 824. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
