Chem. J. Chinese Universities ›› 2026, Vol. 47 ›› Issue (1): 20250212.doi: 10.7503/cjcu20250212
• Review • Previous Articles Next Articles
QU Kairu1,2, GUO Lyuzhou3, WANG Wenbin4, YAN Xuzhou4, CAO Xuezheng3, YANG Zhenzhong1(
)
Received:2025-07-30
Online:2026-01-10
Published:2025-09-16
Contact:
YANG Zhenzhong
E-mail:yangzhenzhong@tsinghua.edu.cn
Supported by:CLC Number:
TrendMD:
QU Kairu, GUO Lyuzhou, WANG Wenbin, YAN Xuzhou, CAO Xuezheng, YANG Zhenzhong. Recent Progresses in Synthesis of Cyclic Polymers in Large-scale and Some Functionalized Composites[J]. Chem. J. Chinese Universities, 2026, 47(1): 20250212.
Fig.1 Schematic ring closure method to prepare cyclic polymers via three representative strategies(A) and the ring⁃expansion strategy(B)[28](A) A2+B2 bimolecular coupling, A2 unimolecular self-cyclization, A-B unimolecular self-cyclization.Copyright 2009, the Royal Society of Chemistry.
Fig.3 Schemes of the reaction and equipment to synthesize cyclic polymers by ATRP⁃CuAAC cyclization via the evaporation/condensation/extraction/inflow process[47]
Fig.5 Electrostatics⁃mediated ring closure at the dynamic SCNP toward large⁃scale synthesis of pure polymer rings(A) and TEM images of the ring(B) and linear(C) polymer upon the chain extension[58]
Fig.7 The intrinsic viscosity([η], A)[67] and rouse model(solid lines) predicating storage modulus(G′) of polystyrene rings, and the experimental data(open circles) at a reference temperature of 160 ℃(B)[68](A) Copyright 2017, American Chemical Society; (B) Copyright 2015, American Chemical Society.
Fig.8 Schematic illustration of the rhombic metallacycle crosslinked polymer network(CP⁃nR) formed using 60° Pt(II) acceptors(A) and the hexagonal metallacycle crosslinked polymer network(CP⁃nH) obtained with 120° Pt(II) acceptors(B)[89], schematic formation of CCN(C) and stress⁃strain profiles of LCN and CCN at a deformation rate of 100 mm/min(D)[90]
Fig.10 Molecular architecture and dynamic behavior of the macromolecular [2]rotaxane crosslinker, and the mechanical performances of RCP and CCP(A)[96] and mechanical interlocking network with a densely rotaxanated backbone(B)[97](A) Copyright 2015, American Chemical Society; (B) Copyright 2022, Springer Nature.
Fig.11 Synthesis of the interlocked catenated poly(ε⁃caprolactone)(A), wide⁃angle X⁃ray scattering(WAXS) patterns of Lin⁃PCL99 and De⁃Caten⁃PCL88 crystals(B)[106], DMA spectra of the PC copolymer containing 20%(mass fraction) of [2]catenane(C)[107], synthesis of the catenane⁃based mechanically linked polymers(D) and Pd⁃removal of catenanes to enhance the polymer chain mobility, reduce Tg and increase crystallization rate(E)[108], schematic Olympic gel(F) and dynamic light⁃scattering microrheological behaviors of the enzyme⁃active gel(G) and permanent enzyme⁃inactive gel(H)[111]
| [1] | Kricheldorf H. R., J. Polym. Sci., Part A: Polym. Chem., 2010, 48(2), 251—284 |
| [2] | Hadziioannou G., Cotts P. M., ten Brinke G., Han G., Kovacs A., Macromolecules, 1987, 20(3), 493—497 |
| [3] | Kapnistos M., Lang M., Vlassopoulos D., Pyckhout-Hintzen W., Richter D., Cho D., Chang T., Rubinstein M., Nat. Mater., 2008, 7(12), 997—1002 |
| [4] | Poelma J. E., Ono K., Miyajima D., Aida T., Satoh K., Hawker J., ACS Nano, 2012, 6(12), 10845—10854 |
| [5] | Córdova M. E., Lorenzo A. T., Müller A. J., Hoskins N., Grayson M., Macromolecules, 2011, 44(7), 1742—1746 |
| [6] | Zaldua N., Liénard R., Josse T., Zubitur M., Mugica A., Iturrospe A., Arbe A., de Winter J., Coulembier O., Müller J., Macromolecules, 2018, 51(5), 1718—1732 |
| [7] | Romio M., Trachsel L., Morgese G., Ramakrishna N., Spencer D., Benetti M., ACS Macro Lett., 2020, 9(7), 1024—1033 |
| [8] | Golba B., Benetti E. M., de Geest B. G., Biomaterials, 2021, 267, 120468 |
| [9] | Xu X., Zhou N., Zhu J., Tu Y., Zhang Z., Cheng Z., Zhu X., Macromol. Rapid Commun., 2010, 31(20), 1791—1797 |
| [10] | Morgese G., Cavalli E., Rosenboom J., Zenobi⁃Wong M., Benetti M., Angew. Chem. Int. Ed., 2018, 57(6), 1621—1626 |
| [11] | Zhang K., Lackey M. A., Cui J., Tew N., J. Am. Chem. Soc., 2011, 133(11), 4140—4148 |
| [12] | Aboudzadeh M. A., Iturrospe A., Arbe A., Grzelczak M., Barroso⁃Bujans F., ACS Macro Lett., 2020, 9(11), 1604—1610 |
| [13] | Elardo M. J., Levenson A. M., Kitos V. A. P., Pomfret M. N., Golder M. R., Chem. Sci., 2024, 15(41), 17193—17199 |
| [14] | Liu C., Cheu C., Barker J. G., Yang L., Nieh M., J. Colloid Interf. Sci., 2023, 630, 629—637 |
| [15] | Martínez C. R., Pérez J. M., Arrabal⁃Campos F. M., Batuecas M., Ortuño M. A., Fernández I., Polym. Chem., 2021, 12(28), 4083—4092 |
| [16] | Huo L., Qu K., Yang Z., Jia D., Chin. J. Polym. Sci., 2025, 43, 399—405 |
| [17] | Guo X., Liu J. Y., Yang X. Y., Jin Z. L., Noritatsu T., Chem. Res. Chinese Universities, 2025, 41(4), 893—902 |
| [18] | Gao J. F., Lin X., Jiang B. W., Tang S. P., Zhang H. Y., Chen F. T., Jin Z. L., Li Y. J., Noritatsu T., Chem. Res. Chinese Universities, 2025, 41(4), 868—879 |
| [19] | Yan S. H., Wang L. J., Shan P. N., Lin X., Shi W. L., Chem. Res. Chinese Universities, 2025, 41(4), 859—867 |
| [20] | Guo D., Huang G. H., Bai H. J., Wang Y. L., Cao G. Q., Liu B., Hu S. L., Chem. J. Chinese Universities, 2025, 46(6), 20250091 |
| [21] | Liu S. Y., Su W., Zhou Z. Y., Yang Z. Y., Pei H. F., He Z. R., Wang N., Yue L., Chem. J. Chinese Universities, 2024, 45(11), 20240382 |
| [22] | Gao R., Xu L., Li S. Liu N., Chen Z., Wu Z., Chem. Eur. J., 2023, 29(41), e202300916 |
| [23] | Ochs J., Pagnacco C., Barroso⁃Bujans F., Prog. Polym. Sci., 2022, 134, 101606 |
| [24] | Kricheldorf H., Polycondensation: History and New Results, Springer, Berlin, Heidelberg, 2014 |
| [25] | Haque F., Grayson S., Nat. Chem., 2020, 12(5), 433—444 |
| [26] | Hu J., Liu S., Sci. China Chem., 2017, 60(9), 1153—1161 |
| [27] | Shao Y., Yang Z., Prog. Polym. Sci., 2022, 133, 101593 |
| [28] | Laurent B., Grayson S., Chem. Soc. Rev., 2009, 38, 2202—2213 |
| [29] | Zhu Y., Hosmane N., Chem. Open, 2015, 4(4), 408—417 |
| [30] | Chang Y., Waymouth R., J. Polym. Sci. Part A: Polym. Chem., 2017, 55(18), 2892—2902 |
| [31] | Ouchi M., Kammiyada H., Sawamoto M., Polym. Chem., 2017, 8(34), 4970—4977 |
| [32] | Jia Z., Monteiro M., J. Polym. Sci. A Polym. Chem., 2012, 50(11), 2085—2097 |
| [33] | Kricheldorf H., Macromol. Symp., 2003, 199(1), 15—22 |
| [34] | Jacobson H., Stockmayer W., J. Chem. Phys., 1950, 18(12), 1600—1606 |
| [35] | Josse T., DeWinter J., Gerbaux P., Coulembier O., Angew. Chem. Int. Ed., 2016, 55(45), 13944—13958 |
| [36] | Hild G., Kohler A., Rempp P., Eur. Polym. J., 1980, 16(6), 525—527 |
| [37] | Boutillier J., Lepoittevin B., Favier C., Masure M., Hémery P., Sigwalt P., Eur. Polym. J., 2002, 38(2), 243—250 |
| [38] | Yin R., Hogen⁃Esch T., Macromolecules, 1993, 26(25), 6952—6957 |
| [39] | Iatrou H., Hadjichristidis N., Meier G., Frielinghaus H., Monkenbusch M., Macromolecules, 2002, 35(14), 5426—5437 |
| [40] | Madani A., Favier J., Hémery P., Sigwalt P., Polym. Int., 1992, 27(4), 353—357 |
| [41] | Polymeropoulos G., Zapsas G., Ntetsikas K., Bilalis P., Gnanou Y., Hadjichristidis N., Macromolecules, 2017, 50(4), 1253—1290 |
| [42] | Blackburn S., Tillman E., Macromol. Chem. Phys., 2015, 216(12), 1282—1290 |
| [43] | Konomoto T., Nakamura K., Yamamoto T., Tezuka Y., Macromolecules, 2019, 52(23), 9208—9219 |
| [44] | Sharma S., Ntetsikas K., Ladelta V., Bhaumik S., Hadjichristidis N., Polym. Chem., 2021, 12(45), 6616—6625 |
| [45] | Zhang L., Wu Y., Li S., Macromolecules, 2020, 53(19), 8621—8630 |
| [46] | Qu L., Sun P., Wu Y., Macromol. Rapid Commun., 2017, 38(15), 1700121 |
| [47] | Zhu X., Zhou N., Zhu J., Zhang Z., Zhang W., Cheng Z., Tu Y., Zhu X., Macromol. Chem. Phys., 2013, 214(10), 1107—1113 |
| [48] | Sun P., Liu J., Zhang Z., Zhang K., Polym. Chem., 2016, 7(12), 2239—2244 |
| [49] | Baeten E., Rubens M., Wuest K., Barner⁃Kowollik C., Junkers T., React. Chem. Eng., 2017, 2(6), 826—829 |
| [50] | Chen L., Wang X., Hou R., Lu H., He Z., Zhou X., Zhang W., Wang X., Polym. Chem., 2023, 14(40), 4659—4670 |
| [51] | Shen H., Wang G., Polym. Chem., 2017, 8(36), 5554—5560 |
| [52] | Huettner N., Frisch H., Dargaville T., Eur. Polym. J., 2024, 203, 112659 |
| [53] | Ge Z., Zhou Y., Xu J., Liu H., Chen D., Liu S., J. Am. Chem. Soc., 2009, 131(5), 1628—1629 |
| [54] | Liu Y., Jih J., Dai X., Bi G., Zhou Z., Nature, 2019, 570(7760), 257—261 |
| [55] | Zhang H., Zha H., Liu C., Hong C., Sci. China Chem., 2022, 65(12), 2558—2566 |
| [56] | Zha H., Wang Z., Cheng L., Liu C., Hong C., Macromolecules, 2024, 57(24), 11322—11330 |
| [57] | Zha H., Wang Z., Liu C., Hong C., Chin. Chem. Lett., 2024, 35(2), 108956 |
| [58] | Qu K., Du L., Zhou S., Huo L., Gu A., Lu D., Chen C., Di J., Yang Z., Macromolecules, 2025, 58(8), 4131—4137 |
| [59] | Golba B., Benetti E. M., de Geest B. G., Biomaterials, 2021, 267, 120468 |
| [60] | Peng L., Liu S., Feng A., Yuan J., Mol. Pharm., 2017, 14(8), 2475—2486 |
| [61] | Park W. I., Kim Y., Jeong J. W., Kim K., Yoo J. K., Hur Y. H., Kim J. M., Thomas E. L., Alexander⁃Katz A., Jung Y. S., Sci. Rep., 2013, 3(1), 3190 |
| [62] | Valero J., Pal N., Dhakal S., Walter N. G., Famulok M., Nat. Nanotechnol., 2018, 13(6), 496—503 |
| [63] | Chen C., Weil T., Nanoscale Horiz., 2022, 7(10), 1121—1135 |
| [64] | Kammiyada H., Ouchi M., Sawamoto M., Macromolecules, 2017, 50(3), 841—848 |
| [65] | Bielawski C. W., Benitez D., Grubbs R. H., Science, 2002, 297(5589), 2041—2044 |
| [66] | Halverson J. D., Grest G. S., Grosberg A. Y., Kremer K., Phys. Rev. Lett., 2012, 108(3), 038301 |
| [67] | Jeong Y., Jin Y., Chang T., Uhlik F., Roovers J., Macromolecules, 2017, 50(19), 7770—7776 |
| [68] | Doi Y., Matsubara K., Ohta Y., Nakano T., Kawaguchi D., Takahashi Y., Takano A., Matsushita Y., Macromolecules, 2015, 48(9), 3140—3147 |
| [69] | Doi Y., Matsumoto A., Inoue T., Iwamoto T., Takano A., Matsushita Y., Takahashi Y., Watanabe H., Rheol. Acta, 2017, 56, 567—581 |
| [70] | Doi Y., Nihon Reoroji Gakk., 2022, 50(1), 57—62 |
| [71] | Tsalikis D. G., Mavrantzas V. G., Vlassopoulos D., ACS Macro Lett., 2016, 5(6), 755—760 |
| [72] | Parisi D., Costanzo S., Jeong Y., Ahn J., Chang T., Vlassopoulos D., Halverson J. D., Kremer K., Ge T., Rubinstein M., Grest G. S., Srinin W., Grosberg A. Y., Macromolecules, 2021, 54(6), 2811—2827 |
| [73] | Stano R., Smrek J., Likos C. N., ACS Nano, 2023, 17(21), 21369—21382 |
| [74] | Obukhov S. P., Rubinstein M., Duke T., Phys. Rev. Lett., 1994, 73(9), 1263 |
| [75] | Kruteva M., Monkenbusch M., Allgaier J., Pyckhout⁃Hintzen W., Porcar L., Richter D., Macromolecules, 2023, 56(13), 4835—4844 |
| [76] | Yan Z., Wang W., Macromolecules, 2024, 57(9), 4236—4245 |
| [77] | Ge T., Panyukov S., Rubinstein M., Macromolecules, 2016, 49(2), 708—722 |
| [78] | O’Connor T. C., Ge T., Grest G. S., J. Rheol., 2022, 66(1), 49—65 |
| [79] | O’Connor T. C., Ge T., Rubinstein M., Grest G. S., Phys. Rev. Lett., 2020, 124(2), 027801 |
| [80] | Goto S., Kim K., Matubayasi N., J. Chem. Phys., 2021, 155(12), 57—62 |
| [81] | Li Y., Wu Z., Zong Z., Cao X., ACS Macro Lett., 2023, 12(2), 183—188 |
| [82] | Guo L., Wu C., Merlitz H., Chen J., Yang Z., Forest M. G., Wu C., Cao X., Macromolecules, 2025, 58(12), 6149—6157 |
| [83] | Chen D., Panyukov S., Sapir L., Rubinstein M., ACS Macro Lett., 2023, 12(3), 362—368 |
| [84] | Xiong Z., Yu W., Chin. J. Polym. Sci., 2023, 41(9), 1410—1424 |
| [85] | Minatti E., Viville P., Borsali R., Schappacher M., Deffieux A., Lazzaroni R., Macromolecules, 2003, 36(11), 4125—4133 |
| [86] | Honda S., Yamamoto T., Tezuka Y., J. Am. Chem. Soc., 2010, 132(30), 10251—10253 |
| [87] | Poelma J. E., Ono K., Miyajima D., Aida T., Satoh K., Hawker C. J., ACS Nano, 2012, 6(12), 10845—10854 |
| [88] | Zhao D., Yan X., Chem. Eur. J., 2025, 31(21), e202404780 |
| [89] | He L., Jiang Y., Wei J., Zhang Z., Hong T., Ren Z., Huang J., Huang F., Stang P. J., Li S., Nat. Commun., 2024, 15(1), 3050 |
| [90] | Zhao D., Zhang Z., Wei Z., Zhao J., Li T., Yan X., Angew. Chem. Int. Ed., 2024, 63(19), e202402394 |
| [91] | Xia D., Wang P., Ji X., Khashab N. M., Sessler J. L., Huang F., Chem. Rev., 2020, 120(13), 6070—6123 |
| [92] | Hart L. F., Hertzog J. E., Rauscher P. M., Rawe B. W., Tranquilli M. M., Rowan S. J., Nat. Rev. Mater., 2021, 6(6), 508—530 |
| [93] | Wang W., Bai R., Wang C., Yang L., Cheng L., Zhang Z., Yu W., Yan X., Angew. Chem. Int. Ed., 2025, 64(30), e202507192 |
| [94] | Huang Z., Chen X., O’Neill S. J. K., Wu G., Whitaker D. J., Li J., McCune J. A., Scherman O. A., Nat. Mater., 2022, 21(1), 103—109 |
| [95] | Wang L., Cheng L., Li G., Liu K., Zhang Z., Li, P., Dong S., Yu W., Huang F., Yan X., J. Am. Chem. Soc., 2020, 142(4), 2051—2058 |
| [96] | Sawada J., Aoki D., Uchida S., Otsuka H., Takata T., ACS Macro Lett., 2015, 4(5), 598—601 |
| [97] | Yang X., Cheng L., Zhang Z., Zhao J., Bai R., Guo Z., Yu W., Yan X., Nat. Commun., 2022, 13(1), 6654 |
| [98] | Okumura Y., Ito K., Adv. Mater., 2001, 13(7), 485—487 |
| [99] | Kato K., Yasuda T., Ito K., Macromolecules, 2013, 46(1), 310—316 |
| [100] | Mayumi K., Nagao M., Endo H., Osaka N., Shibayama M., Ito K., Phys. Rev. B, 2009, 404(17), 2600—2602 |
| [101] | Ito K., Polym. J., 2012, 44(1), 38—41 |
| [102] | Ebe M., Soga A., Fujiwara K., Ree B. J., Marubayashi H., Hagita K., Imasaki A., Baba M., Yamamoto T., Tajima K., Deguchi T., Jinnai H., Isono T., Satoh T., Angew. Chem. Int. Ed., 2023, 62(35), e202304493 |
| [103] | Hagita K., Murashima T., Polymer, 2021, 223, 123705 |
| [104] | Hagita K., Murashima T., Ebe M., Isono T., Satoh T., Polymer, 2022, 245, 124683 |
| [105] | Bai R., Zhang Z., Di W., Yang X., Zhao J., Ouyang H., Liu G., Zhang X., Cheng L., Cao Y., Yu W., Yan X., J. Am. Chem. Soc., 2023, 145(16), 9011—9020 |
| [106] | Cao P. F., Mangadlao J. D., de Leon A., Su Z., Advincula R. C., Macromolecules, 2015, 48(12), 3825—3833 |
| [107] | Fustin C. A., Bailly C., Clarkson G. J., de Groote P., Galow T. H., Leigh D. A., Robertson D., Slawin A. M. Z., Wong J. K. Y., J. Am. Chem. Soc., 2003, 125(8), 2200—2207 |
| [108] | Ahamed B. N., Van Velthem P., Robeyns K., Fustin C. A., ACS Macro Lett., 2017, 6(4), 468—472 |
| [109] | Xiong X., Xue M., Xue L., Zhang L., Zhang Z., Chen J., Zhang G., Liu H., Cui J., Angew. Chem. Int. Ed., 2025, 64(22), e202425034 |
| [110] | Renger H. C., Wolstenholme D. R., J. Cell Biol., 1972, 54(2), 346—364 |
| [111] | Krajina B. A., Zhu A., Heilshorn S. C., Spakowitz A. J., Phys. Rev. Lett., 2018, 121(14), 148001 |
| [112] | Wang J., O’Connor T. C., Grest G. S., Ge T., Phys. Rev. Lett., 2022, 128(23), 237801 |
| [113] | Mo J., Wang J., Wang Z., Lu Y., An L., Macromolecules, 2022, 55(5), 1505—1514 |
| [114] | Bonato A., Marenduzzo D., Orlandini E., Phys. Rev. Lett., 2025, 134(18), 188203 |
| [115] | Hagita K., Murashima T., Macromolecules, 2021, 54(17), 8043—8051 |
| [116] | Chiarantoni P., Micheletti C., Macromolecules, 2022, 55(11), 4523—4532 |
| [117] | Parisi D., Ahn J., Chang T., Vlassopoulos D., Rubinstein M., Macromolecules, 2020, 53(5), 1685—1693 |
| [1] | LIN Jianfei, LI Yanan, WANG Yinglin, ZHANG Xintong. Tailoring the Cross-linking Core Size Toward Enhanced Low-temperature Performance of Polymer Electrolytes for Quasi-solid-state Dye-sensitized Solar Cells [J]. Chem. J. Chinese Universities, 2026, 47(1): 174. |
| [2] | HAN Yandong, YANG Wensheng. One-step Preparation of Au/Mesoporous Silica Composite Particles [J]. Chem. J. Chinese Universities, 2026, 47(1): 198. |
| [3] | YIN Yongting, LU Xiaofeng. Electrospun Nanofibrous Transition Metal-based Bifunctional Electrocatalysts Toward Overall Water Splitting [J]. Chem. J. Chinese Universities, 2026, 47(1): 71. |
| [4] | NIE Chuanqi, DONG Fuyao, GUO Ziwei, CHENG Long, YANG Nailiang, LIU Kesong, YU Cunming, JIANG Lei. Preparation and Performance of SiO2/PMMA Superhydrophobic Transparent Composite Coatings [J]. Chem. J. Chinese Universities, 2026, 47(1): 127. |
| [5] | MA Shuo, CHEN Shixin, XIA Chunlong, ZHOU Hongfei, LI Cong, BAI Weihua, CUI Bo, ZHENG Guiyue, BU Naishun, HE Zhe. Built-in Phenyl Bridging Switch Enhances the Oil-water Separation Performance of Porous Aromatic Framework Material [J]. Chem. J. Chinese Universities, 2025, 46(9): 20250074. |
| [6] | ZHANG Yuwei, DU Yihao, ZHANG Yantu, LI Yunyun. Cataluminescent Sensing of 1,2-Epoxypropane Using Dy₂O₃/La₂O₃ Rare Earth Composite Oxides [J]. Chem. J. Chinese Universities, 2025, 46(8): 20250108. |
| [7] | LIANG Yi, HUANG Dequan, YIN Guangda, WEN Gang, QIN Weixian, YAO Yuan, WEI Tao. Electrolytes Design and Electrochemical Performance for Lithium Metal Batteries Based on Fluorosiloxane Solvents [J]. Chem. J. Chinese Universities, 2025, 46(7): 20250024. |
| [8] | WANG Chunhui, ZHANG Yang, HAN Zhe, GAO Yuan, HE Puyong, FAN Chaoyue, QIU Jie. Synthesis, Structure, Magnetism of a Thorium-Iron Oxo Cluster and Its Application in Catalyzing the Coupling Reaction of Benzylamine [J]. Chem. J. Chinese Universities, 2025, 46(3): 20240437. |
| [9] | SUN Wei, LI Fusen, HAN Cunxin, DENG Yue, WEI Wenlin, LI Bing, SHI Dongfang. Photocatalytic Preparation and Antibacterial Activity of GO@Au Nanocomposites [J]. Chem. J. Chinese Universities, 2025, 46(3): 20240461. |
| [10] | XU Mingwei, YANG Shangxue, LIU Guanlin, YANG Ting, ZHANG Yifan, ZHAO Yue, LI Heguo, ZHANG Mingming, XU Huan. Organic-inorganic Nanohybrid Electroactive Polylactic Acid Protective Membranes for High Humidity PMs Filtration and Passive Physiological Monitoring [J]. Chem. J. Chinese Universities, 2025, 46(3): 20240513. |
| [11] | XIE Zhuoxue, KOU Yan, SHI Quan, TIAN Ying. Synthesis and Temperature Control Performance of Silica Gel Waste Composite Phase Change Materials [J]. Chem. J. Chinese Universities, 2025, 46(2): 20240372. |
| [12] | WANG Bin, HU Mengjie, LI Peilin, WANG Wenjing, YANG Ying, ZHU Lianjie. Highly Sensitive Detection on Trace H2S Gas over CuCl2-modified WO3 [J]. Chem. J. Chinese Universities, 2025, 46(12): 20250267. |
| [13] | WU Jialei, YU Liqin, XIE Shengming, WANG Bangjin, ZHANG Junhui, YUAN Liming. Preparation of a Chiral Polyimine Macrocycle Bonded Chiral Stationary Phase via Thiol-ene Click Reaction for Enantioseparation in High-performance Liquid Chromatography [J]. Chem. J. Chinese Universities, 2025, 46(11): 20250102. |
| [14] | GOU Lei, SUN Aihong, LIANG Kai, WANG Yanjing, FAN Xiaoyong, LI Donglin. Construction of Lanthanide-based Corrosion-resistant Films for Aqueous Zinc Batteries with Ultra-long Cycle Life [J]. Chem. J. Chinese Universities, 2025, 46(10): 20250105. |
| [15] | CAI Lei, LI Lizhe, LI Hao, CAI Chang, LI Tiehu. Preparation and Property of Sponge-like Graphene Oxide/Polyethylene Glycol Composite Phase Change Materials [J]. Chem. J. Chinese Universities, 2025, 46(10): 20250035. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||