Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (12): 20240337.doi: 10.7503/cjcu20240337
• Article: Inorganic Chemistry • Previous Articles Next Articles
ZENG Xiangchu1,2, YE Yuting1,2, WU Zhe1,2, WEI Ruisong1,2(), LIU Huan3
Received:
2024-07-05
Online:
2024-12-10
Published:
2024-09-11
Contact:
WEI Ruisong
E-mail:wrs1708@sina.com
Supported by:
CLC Number:
TrendMD:
ZENG Xiangchu, YE Yuting, WU Zhe, WEI Ruisong, LIU Huan. Intramolecular Electron Transfer Mechanism of pH-Mediated Cupric Complexes Activated Peroxymonosulfate Selective Oxidation of Aqueous Tetracycline[J]. Chem. J. Chinese Universities, 2024, 45(12): 20240337.
Species | Electron energy/a.u. | Free energy correction/a.u. | Free energy/a.u. | ||
---|---|---|---|---|---|
303 K | 353 K | 303 K | 353 K | ||
H2O | -76.3859 | 0.002584 | -0.00118 | -76.3803 | -76.3840 |
H + | 0 | -0.0102 | -0.01231 | -0.44141 | -0.44352 |
Cu⁃4H2O | -502.587 | 0.067376 | 0.059214 | -502.517 | -502.525 |
TC | -1602.18 | 0.420748 | 0.405165 | -1601.75 | -1601.77 |
M1 | -1951.56 | 0.456565 | 0.438817 | -1951.10 | -1951.12 |
M2 | -1951.98 | 0.466724 | 0.448389 | -1951.51 | -1951.53 |
M3 | -1951.54 | 0.456971 | 0.439220 | -1951.08 | -1951.10 |
M4 | -1951.56 | 0.456087 | 0.438193 | -1951.10 | -1951.12 |
M5 | -1951.53 | 0.452588 | 0.434274 | -1951.08 | -1951.10 |
Table 1 Free energy change of the complexation reaction
Species | Electron energy/a.u. | Free energy correction/a.u. | Free energy/a.u. | ||
---|---|---|---|---|---|
303 K | 353 K | 303 K | 353 K | ||
H2O | -76.3859 | 0.002584 | -0.00118 | -76.3803 | -76.3840 |
H + | 0 | -0.0102 | -0.01231 | -0.44141 | -0.44352 |
Cu⁃4H2O | -502.587 | 0.067376 | 0.059214 | -502.517 | -502.525 |
TC | -1602.18 | 0.420748 | 0.405165 | -1601.75 | -1601.77 |
M1 | -1951.56 | 0.456565 | 0.438817 | -1951.10 | -1951.12 |
M2 | -1951.98 | 0.466724 | 0.448389 | -1951.51 | -1951.53 |
M3 | -1951.54 | 0.456971 | 0.439220 | -1951.08 | -1951.10 |
M4 | -1951.56 | 0.456087 | 0.438193 | -1951.10 | -1951.12 |
M5 | -1951.53 | 0.452588 | 0.434274 | -1951.08 | -1951.10 |
Complex | Bond length/nm | Mayer bond order | NPA charge/e | Ionization potential/eV | ||||
---|---|---|---|---|---|---|---|---|
Cu—OW | Cu—Ohydroxy | Cu—Ocarbonyl | Cu—OW | Cu—Ocarboxyl | Cu—Ocarbonyl | Cu(II) | ||
Cu(H2O)42 + | 0.1981 | — | — | 0.434 | — | — | 1.242 | 10.03 |
M 1 | 0.1998 | 0.1901 | 0.1898 | 0.413 | 0.550 | 0.565 | 1.107 | 5.72 |
Table 2 DFT calculation properties of cupric complexes
Complex | Bond length/nm | Mayer bond order | NPA charge/e | Ionization potential/eV | ||||
---|---|---|---|---|---|---|---|---|
Cu—OW | Cu—Ohydroxy | Cu—Ocarbonyl | Cu—OW | Cu—Ocarboxyl | Cu—Ocarbonyl | Cu(II) | ||
Cu(H2O)42 + | 0.1981 | — | — | 0.434 | — | — | 1.242 | 10.03 |
M 1 | 0.1998 | 0.1901 | 0.1898 | 0.413 | 0.550 | 0.565 | 1.107 | 5.72 |
System | cTC/(μg‧L -1) | cCu(II)/(μg‧L -1) | cFe(II)/(μg‧L -1) | cMn(II)/(μg‧L -1) | cCa(II)/(μg‧L -1) | cTOC/(μg‧L -1) |
---|---|---|---|---|---|---|
Duck wastewater | 7.83 | 42.15 | 76.23 | 5.14 | 132.18 | 13.56 |
Table 3 Cu(II), TC content and TOC concentration in actual aquaculture wastewater
System | cTC/(μg‧L -1) | cCu(II)/(μg‧L -1) | cFe(II)/(μg‧L -1) | cMn(II)/(μg‧L -1) | cCa(II)/(μg‧L -1) | cTOC/(μg‧L -1) |
---|---|---|---|---|---|---|
Duck wastewater | 7.83 | 42.15 | 76.23 | 5.14 | 132.18 | 13.56 |
1 | Mulchandani R., Wang Y., Wang M., Boeckel T. P., Nat. News, 2023, 3, e0001305 |
2 | Zhe X., Zhang Q. R., Li X. C., Huang X. F., Chem. Eng. J., 2022, 429, 131688 |
3 | Zeng X. C., Zhang G. H., Zhu J. F., Wu Z., Environ. Sci.: Wat. Res., 2022, 8, 907 |
4 | Zeng X. C., Zhu J. F., Zhang G. H., Wu Z., Lu J. Y., Ji H. D., Chem. Eng. J., 2023, 468, 143536 |
5 | Yang X. B., Zeng X. C., Chen H. C., Xin L., Pan J. J., Ji H. D., Cheng K. J., Chem. Eng. J., 2024, 483, 148697 |
6 | Yang Z. C., Qian J. S., Shan C., Li H. C., Yin Y. Y., Pan B. C., Environ. Sci. Technol., 2021, 55, 14494—14514 |
7 | Rastogi A., Al⁃Abed S., Dionysiou D., Appl. Catal. B, 2009, 85, 171—179 |
8 | Li J., Pham A., Dai R., Wang Z., Waite T., J. Hazard. Mater., 2020, 392, 122261 |
9 | Chen J. B., Zhou X. F., Sun P. Z., Zhang Y. L., Huang C. H., Environ. Sci. Technol., 2019, 53, 11774—11782 |
10 | Wang L. H., Xu H. D., Jiang N., Wang Z. M., Jiang J., Zhang T., Environ. Sci. Technol., 2020, 54, 4686—4694 |
11 | Sun S. H., Shan C., Yang Z. C., Wang S., Pan B. C., Environ. Sci. Technol., 2022, 56, 634—641 |
12 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams⁃Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 16, Revision A.03, Gaussian Inc., Wallingford CT, 2016 |
13 | Zhang J. C., Li F. H., Liu W., Wang Q. L., Li X. N., Hung S. F., Yang H. B., Liu B., Angew. Chem. Int. Ed., 2024, e202412245 |
14 | Zeng Q. Z., Zhu J. F., Xiong J. J., Zha W., Liu J. H., Zeng X. C., Zhang G. H., J. Environ. Chem. Eng., 2024, 12, 114302 |
15 | Liu J. H., Zhu J. F., Ma X., Zeng X. C., Zhang G. H., Sun Y. H., Fan G. D., Appl. Surf. Sci., 2025, 680, 161416 |
16 | Lu T., Chen Q. X., Chemistry⁃ Methods, 2021, 1, 231—239 |
17 | Humphrey W., Dalke A., Schulten K., J. Mol. Graph. Model., 1996, 14, 33—38 |
18 | Li S., Zou J., Wu J. Y., Lin J. B., Tang C. Y., Yang S. Y., Chen L. X., Li Q. S., Wang P. P., Ma J., Water Res., 2024, 259, 121891 |
19 | Lu T., Chen F., J. Comput. Chem., 2012, 33, 580—592 |
20 | Lu T., Chen Q. X., J. Comput. Chem., 2022, 43, 539—555 |
21 | Liu Z. B., Heng S. L., Dai Q. C., Gao Y. J., Han Y. L., Hu L. T., Liu Y. S., Lu X. Q., Zhen G. Y., Water Res., 2024, 253, 121265 |
22 | Zeng X. C., Zhang G. H., Wu Z., Environ. Sci. Pollut. R, 2022, 29, 30324—30336 |
23 | Zeng X. C., Zhang G. H., Li X. L., Zhu J. F., Wu Z., J. Environ. Manage., 2022, 325, 116621 |
24 | Jiang S. F., Ling L. L., Chen W. J., Liu W. J., Li D. C., Jiang H., Chem. Eng. J., 2019, 359, 572—583 |
25 | Li Y. J., Wang T. Y., Wang F. X., Wang C. C., Chinese J. Inorg. Chem., 2024, 40(3), 481—495 |
李雨佳, 王天予, 王茀学, 王崇臣. 无机化学学报, 2024, 40(3), 481—495 | |
26 | Guo F., Wang K., Lu J., Chen J., Dong X., Xia D., Zhang A., Wang Q., Chemosphere, 2018, 218, 1071—1081 |
27 | Li X., Zhou Y., Wang D. N., Pei Y., Wu B., Zhang Y. M., Chem. J. Chinese Universities, 2024, 45(1), 20230348 |
李欣, 周颖, 王鼎南, 裴勇, 武斌, 张宜明. 高等学校化学学报, 2024, 45(1), 20230348 | |
28 | Liu Y., Sohi S. P., Liu S., Guan J., Zhou J., Chen J., J. Environ. Manage., 2019, 235, 276—281 |
29 | Duan X., Small, 2015, 11(25), 3036—3044 |
30 | Guo Y., Yan C. C., Wang P. F., Rao L., Wang C., Chem. Eng. J., 2020, 387, 124136 |
31 | Wang Q. X., Han Y. G., Zhao P., Wang S., Liu Y. R., Li Y., Chem. J. Chinese Universities, 2024, 45(1), 20230370 |
王秋霞, 韩玉贵, 赵鹏, 王爽, 刘亚茹, 李轶. 高等学校化学学报, 2024, 45(1), 20230370 | |
32 | Ma Y. F., Li M., Li P., Wu L., Gao F., Qi X. B., Zhang Z. L., Bioresource Technol., 2021, 319, 124199 |
33 | Zhang T., Wu S., Chen G. Y., Hou L. A., J. Hazard. Mater., 2023, 449, 130971 |
34 | Zeng X. C., Zhang G. H., Zhu J. F., J. Environ. Manage., 2022, 314, 114979 |
35 | Chen C., Ma T., Shang Y., Gao B., Jin B., Dan H., Li Q., Yue Q., Li Y., Wang Y., Xu X., Appl. Catal. B: Environ., 2019, 250, 382—395 |
36 | Yang Y. X., Zhu J. F., Zeng Q. Z., Zeng X. C., Zhang G. H., J. Taiwan Inst. Chem. E, 2023, 145, 104775 |
37 | Sun Y. C., Wang T. T., Han C. H., Bai L., Sun X. Y., Bioresource Technol., 2023, 369, 128373 |
38 | Janssen E. M. L., Erickson P. R., McNeill K., Environ. Sci. Technol., 2014, 48, 4916—4924 |
39 | Li N., Ye J. Y., Dai H. X., Shao P. H., Liang L., Kong L. C., Yan B. B., Chen G. Y., Duan G. Y., Water Res., 2023, 235, 119926 |
40 | Sun S. H., Shan C., Yang Z. C., Wang S., Pan B. C., Environ. Sci. Technol., 2022, 56(1), 634—641 |
[1] | ZHOU Xiaolong, WANG Ruiqi, CHEN Guoli, GUO Wenming, CHEN Fei, ZHOU Yan, SUN Lide, TANG Dabao, XU Yunhui. Synthesis of O-quaternary Ammonium Salt-oxidized Chitosan and Its Antibacterial Finishing for Cotton Fabric [J]. Chem. J. Chinese Universities, 2024, 45(3): 20230375. |
[2] | SONG Jiaxin, CUI Jing, FAN Xiaoqiang, KONG Lian, XIAO Xia, XIE Zean, ZHAO Zhen. Preparation of Mesoporous Silica Supported Highly Dispersed Vanadium Catalyst and Their Catalytic Performance for Selective Oxidation of Ethane [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220532. |
[3] | GUO Haotian, LU Xinhuan, SUN Fanqi, TAO Yiyuan, DUAN Jingui, ZHANG Wang, ZHOU Dan, XIA Qinghua. Synthesis of Nanospherical Mo-MOF Materials for Catalytic Selective Oxidation of Thioethers [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230408. |
[4] | LI Chenchen, NA Yong. g-C3N4/CdS/Ni Composite as a Bifunctional Photocatalyst for H2 Generation and 5-Hydroxymethylfurfural Oxidation [J]. Chem. J. Chinese Universities, 2021, 42(9): 2896. |
[5] | PENG Xiaoming, WU Jianqun, DAI Hongling, YANG Zhanhong, XU Li, XU Gaoping, HU Fengping. Activation of Peroxymonosulfate by Single Atom Catalysts Ni⁃N⁃C for High Efficiency Degradation of Phenol [J]. Chem. J. Chinese Universities, 2021, 42(8): 2581. |
[6] | XIONG Junyu, WANG Shanshan, XU Yanqing, HU Changwen. Selective Oxidation of Atomically Dispersed Fe-N-C Catalyst Under Mild Conditions [J]. Chem. J. Chinese Universities, 2020, 41(6): 1262. |
[7] | YAN Song, ZHANG Chengwu, YUAN Fang, QIN Chuanyu. Synthesis of Nitrogen-doped Carbon Nanotubes and the Performance and Mechanism of PMS Activation [J]. Chem. J. Chinese Universities, 2020, 41(11): 2503. |
[8] | YANG Weiqiang, ZHANG Guiyun, LIN Hua, NI Jiancong, HUANG Lingfeng. Ratiometric Fluorescence Assay for Visual Detection of Tetracycline Residues based on the Complex of Carbon Dots and Europium † [J]. Chem. J. Chinese Universities, 2019, 40(11): 2294. |
[9] | ZHANG Lutao, ZHOU Guangming, LUO Dan, CHEN Rong. Rapid Detection on Chlortetracycline Residues in Honey by Surface-enhanced Raman Spectroscopy† [J]. Chem. J. Chinese Universities, 2018, 39(8): 1662. |
[10] | YU Xiaodan, LIN Xinchen, FENG Wei, LI Weiguang. One-step Preparation and UV-Fenton Properties of Fe3O4/TiO2@Bio-carbon Composities† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2500. |
[11] | DENG Min,FANG Xiaowei,GUO Xiali,HUANG Xueyong,LIU Xingxing,YU Tenghui,LUO Liping. Direct Detection of Tetracycline in Honey by Neutral Desorption-Extractive Electrospray Ionization Mass Spectrometry† [J]. Chem. J. Chinese Universities, 2016, 37(8): 1430. |
[12] | SHI Xian-Ying, MA Wen-Juan, HAN Xiao-Yan, ZHANG Wen, Lü Ai-Feng, WEI Jun-Fa*. Selective Oxidation of Sulfides with Hydrogen Peroxide Catalyzed by Supported Ionic Liquid Brush / Peroxophosphotungstate [J]. Chem. J. Chinese Universities, 2011, 32(10): 2321. |
[13] | HU Ji, WANG Jiang-Tao*. Adsorption of Tetracycline on Marine Sediment [J]. Chem. J. Chinese Universities, 2010, 31(2): 320. |
[14] | QU Yuan-Li, LIU Shi-Yan, WANG Zhen-Lü*, XU Jia-Ning*. Selective Oxidation of Isobutene to Methacrolein over Molybdenum-based Multiphasic Oxide Catalysts [J]. Chem. J. Chinese Universities, 2010, 31(2): 325. |
[15] | ZHU Wan-Chun, JIA Ming-Jun , WANG Zhen-Lü, WANG Guo-Jia, WU Tong-Hao. Selective Oxidation of Isobutane over Hydrothermally Synthesised Mo-V-Te-Nb-O Mixed Oxide Catalyst [J]. Chem. J. Chinese Universities, 2007, 28(2): 334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||