Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (1): 20210625.doi: 10.7503/cjcu20210625
• Review • Previous Articles Next Articles
CHEN Huina, LI Xinxiong(), ZHENG Shoutian(
)
Received:
2021-08-31
Online:
2022-01-10
Published:
2021-10-27
Contact:
LI Xinxiong,ZHENG Shoutian
E-mail:lxx@fzu.edu.cn;stzheng@fzu.edu.cn
Supported by:
CLC Number:
TrendMD:
CHEN Huina, LI Xinxiong, ZHENG Shoutian. Research Advance of Polyoxoniobate-based 3-Dimensional Framework Materials[J]. Chem. J. Chinese Universities, 2022, 43(1): 20210625.
Fig.1 Framework structures based on {Nb10O28} and rare earth ions(A) Coordination patterns of calcium, strontium and barium; (B) representation of the Ca/Sr/Ba-Nb10 compounds;(C) view of the 3D framework of Ca/Sr/Ba-Nb10 compounds.
Fig.2 Framework structures based on {KNb24}2, {Nb47} polyanions and the catalytic study of {Nb47} in DMMP decomposition(A) Ball-and-stick representation of {Cu3(en)3(H2O)3}6+; (B) combine polyhedral/stick representations of the {KNb24}2 compound; (C) view of 3D framework of the {KNb24}2 compound; (D) combine polyhedral/stick representations of {Nb47}; (E) view of the 3D framework of the {Nb47} compound; (F) DMMP decomposition using {Nb47} compound[24], Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig.3 Framework structure of {Cu(en)2KNb24O72H10} and related water adsorption characterization(A) Polyhedral and stick representations of the {α?CuKNb24} unit; (B) polyhedral and ball?and?stick representations of the {L?α?CuKNb24}; (C) polyhedral and stick representations of the {β?CuKNb24} unit; (D) polyhedral and ball?and?stick representations of the {R?β?CuKNb24}; (E) view of the 3D framework of this compound; (F) water vapor adsorption curve[26], Copyright 2020, the Chinese Chemical Society and the Royal Society of Chemistry.
Fig.4 Framework structure of {[Ni(cyclam)]2H4Nb6O19}·12H2O(A) Ball-and-stick representation of [Ni(cyclam)]2+; (B) polyhedral and ball-and-stick representations of {[Ni(cyclam)]2H4Nb6O19}·12H2O; (C) view of the 3D framework of {[Ni(cyclam)]2H4Nb6O19}·12H2O.
Fig.5 Framework structures based on {V4Nb6O30}(A) The linking mode of {V4Nb6O30} and the copper complexes in [Cu(en)2]3{[Cu(en)2][H2V4Nb6O30]}·12H2O; (B) stick representation of the vanadoniobate cluster {V4Nb6O30}; (C) the linking mode of {V4Nb6O30} and the copper complexes in [Cu(1,2dap)2]4·[H2V4Nb6O30]·16H2O; (D) view of the 3D framework of [Cu(en)2]3{[Cu(en)2][H2V4Nb6O30]}·12H2O; (E) view of the 3D framework of [Cu(1, 2dap)2]4[H2V4Nb6O30]·16H2O.
Fig.6 Framework structure based on {Ge4Nb16} and related photocatalytic characterization(A) Representations of the {Na6} clusters; (B) representations of the {Ge4Nb16} clusters; (C) representations of the {Na6Ge8Nb32} clusters; (D) the linkers between {Na6Ge8Nb32} clusters; (E) view of the 3D framework of this compound; (F) photocatalytic degradation of MB solution[34]; (G) photocatalytic degradation rate of MB solution at different pH values[34]. Copyright 2013, The Royal Society of Chemistry.
Fig.7 Framework structures based on {VNb12}(A) Polyhedral representation of {VNb12(VO)4}; (B) view of the 3D framework of [Cu(TETA)]4[VNb12(VO)4O40][OH]·10H2O;(C) polyhedral representation of {VNb12(VO)6}; (D) view of the 3D framework of [Cu(TETA)]4[VNb12(VO)6O40][OH]5·5H2O.
Fig.8 3D Frameworks based on {PNb12V6} and related photocatalytic characterization(A) Polyhedral and stick representations of [Cu(en)2]4[PNb12O40(VO)6]·(OH)5·8H2O; (B) view of the 3D framework of [Cu(en)2]4·[PNb12O40(VO)6]·(OH)5·8H2O; (C) polyhedral and stick representations of [Cu(dap)2]4[PNb12O40(VO)6]·(OH)5·6H2O; (D) view of the 3D framework of [Cu(dap)2]4[PNb12O40(VO)6]·(OH)5·6H2O; (E) time course of H2 evolution under 125 W Hg lamp in 1—8.5 h[39]; (F) time course of H2 evolution under 125 W Hg lamp in 1—2.5 h[39]; (G) time course of H2 evolution under 300 W Xe lamp in 1—8.5[39]; (H) time course of H2 evolution under 300 W Xe lamp in 1—2.5[39]; (I) polyhedral representation of {AsNb8V8}; (J) view of the 3D framework of {AsNb8V8}; (K) photocatalytic degradation of MB by {AsNb8V8}[40] ; (L) photocatalytic degradation of RhB by {AsNb8V8}[40]. (E—H) Copyright 2014, the Royal Society of Chemistry; (K, L) Copyright 2015, the Royal Society of Chemistry.
Fig.9 Framework structures based on {PNb10V2O40(VO)4}, {PNb12O40(VO)6}and related photocatalytic characterization(A) View of the 3D framework of {PNb10V2O40(VO)4}; (B) view of the 3D framework of {PNb12O40(VO)6}; (C) polyhedral representation of {PNb10V2O40(VO)4}; (D) photocatalytic hydrogen evolution using different catalysts[41], Copyright 2016, The American Chemical Society; (E) polyhedral representation of {PNb10V2O40(VO)4}.
Fig.10 Framework structure based on {AsNb12(VO)4} and the characterization of water and ethanol adsorption(A) Polyhedral representation of {AsNb12(VO)4}; (B) view of the 3D framework of [Cu(dap)2]4[AsNb12O40(VO)4]·(OH)·7H2O; (C) the IR spectra of {AsNb12(VO)4}[42]; (D) water and ethanol adsorption isotherms of {AsNb12(VO)4} at 298 K[42]. Copyright 2016, the Royal Society of Chemistry and the Centre National de la Recherche Scientifique.
Fig.11 Framework structures based on {Nb3W3O19},{Cu4Nb78} and the structural transformation characterization(A) Polyhedral and stick representations of {Nb3W3O19}; (B) coordination mode of a Cu+ ion with adjacent polyoxoanions; (C) view of the 3D framework of {[Cu(en)2(H2O)]2(Nb3W3O19)][Cu]2}·OH; (D) view of the 1D and 2D framework of [Cu(en)2][CuI2]2[43]; (E) the PXRD spectra of {Nb3W3O19} and [Cu(en)2][CuI2]2[43]; (F) the PXRD patterns of the samples soaked in KF, KCl, and KBr solutions for 45 days[43]; (G) ball-and-stick representation of {Cu4Nb78}[44]; (H) view of the 3D framework of {Cu4Nb78}[44].(D—F) Copyright 2016, the Royal Society of Chemistry; (G, H) Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig.12 Framework structures based on {PW9Nb3O40}(A) A trinuclear copper unit; (B) the 1D chain constructed by tricopper moieties; (C) view of the 3D framework stacked by the 2D layer; (D) The 2D layer constructed by anti-parallel chains; (E) the 3D network constructed by the 2D layer; (F) view of the 3D framework of [CuICuII3(μ3-OH)(H2O)6(trz)3]2(PW9Nb3O40)·13H2O; (G) view of the 3D framework of [CuICuII3(μ3-OH)(H2O)4(H-trz)(trz)3]2·(PW9Nb3O40)·13H2O.
Fig.14 Framework structure based on {VNb12O40V2} and the related characterization(A) Polyhedral and stick representation of H3[Cu(en)2]4[VNb12O40(VO)2]·13H2O; (B, C) the XPS spectra for Cu2p(B) and V2p(C)[46];(D) view of the 3D framework of this compound; (E) cyanosilylation reaction using this compound[46].Copyright 2020, Elsevier B. V.
Fig.15 Framework structures based on {SiNb18O54}(A) Polyhedral representation of {SiNb18}; (B) view of the nanotube; (C) view of the 3D framework of [Cu(en)2]2-{[Cu(en)2]2Ba2K4· (H2O)13(SiNb18O54)}2·3en·52H2O; (D, E) polyhedron and ball-and-stick view of the linkage between {SiNb18O54} cluster in [Cu(en)2]2·{[Cu(en)2]2Ba2K4(H2O)13(SiNb18O54)}2·3en·52H2O and H6[Cu(en)2]2{[Cu(en)2]2Ba2Na(H2O)7(SiNb18O54)}2·3en·50H2O; (F) view of the 3D framework ofH6[Cu(en)2]2{[Cu(en)2]2Ba2Na(H2O)7(SiNb18O54)}2·3en·50H2O .
Fig.16 Proton conductivity of [Cu(en)2]2{[Cu(en)2]2Ba2K4(H2O)13(SiNb18O54)}2·3en·52H2O and H6[Cu(en)2]2{[Cu(en)2]2Ba2Na(H2O)7(SiNb18O54)}2·3en·50H2O[47](A) Nyquist plots for [Cu(en)2]2{[Cu(en)2]2Ba2K4(H2O)13(SiNb18O54)}2·3en·52H2O at different RH conditions with 25℃; (B) Nyquist plots for [Cu(en)2]2{[Cu(en)2]2Ba2K4(H2O)13(SiNb18O54)}2·3en·52H2O at different temperature conditions with 98% RH; (C) Nyquist plots for H6[Cu(en)2]2{[Cu(en)2]2Ba2Na(H2O)7(SiNb18O54)}2·3en·50H2O at different RH conditions with 25℃; (D) Nyquist plots for H6[Cu(en)2]2-{[Cu(en)2]2Ba2Na(H2O)7(SiNb18O54)}2·3en·50H2O at different temperature conditions with 98% RH; (E) the proton conductivity and Ea value of H6[Cu(en)2]2{[Cu(en)2]2Ba2Na(H2O)7(SiNb18O54)}2·3en·50H2O; (F) the PXRD patterns of H6[Cu(en)2]2· {[Cu(en)2]2Ba2Na(H2O)7(SiNb18O54)}2·3en·50H2O after soaking in different pH aqueous solution. Copyright 2021, Elsevier B. V.
Fig.17 Framework structure based on {Nb3W3O19} and its characterization(A) Coordination mode of a La3+ ion(top), polyhedral and stick representations of {Nb3W3O19}; (B) view of the 3D framework of {[Cu(en)2(H2O)]2(Nb3W3O19)][Cu]2}·OH; (C) the CV of sample in the 0.5 mol/L HAc-NaAc(pH=4.7) aqueous solution(scan rate: 100 mV/s)[48]; (D) emission spectrum of samples, Cs6H[Si(NbO2)3W9O37]·8H2O, and pyridine-3-carboxylic aci[48].Copyright 2017, the Royal Society of Chemistry and the Centre National de la Recherche Scientifique.
Fig.18 Framework structure based on {[Dy(H2O)4]3[Nb24O69(H2O)3]2} and the characterization of proton conduction(A) Polyhedral representation of {[Dy(H2O)4]3[Nb24O69(H2O)3]2}; (B) view of the 3D framework of H9[Cu(en)(H2O)2]?[Cu(en)2]8[Dy(H2O)4]3[Nb24O69(H2O)3]2?36H2O; (C) nyquist plots at 98% RH under different temperature[49];(D) Ea value of H9[Cu(en)?(H2O)2][Cu(en)2]8[Dy(H2O)4]3[Nb24O69(H2O)3]2?36H2O[49].
Fig.19 Framework structure based on {Eu12W12O36}(A) Polyhedral representation of {Eu12W12O36}(left) and [Nb6O19]8-(right); (B) polyhedral and ball-and-stick representations of {Eu12W12O36(H2O)24(Nb6O19)12}; (C) view of the 3D framework of Na6K10[Cu(en)2]4[Eu12W12O36(H2O)24(H3Nb6O19)12]·solv.
Fig.20 Framework structure of {[Cu(en)2]@{[Cu2(trz)2(en)2]6[H10Nb68O188]}} and the related photocatalytic characterization(A) Polyhedral and stick representations of {Nb68} cage; (B) view of the 3D framework of {[Cu(en)2]@{[Cu2 (trz)2(en)2]6·[H10Nb68O188]}}; (C) vapor sorption isotherms[51]; (D) time courses of photocatalytic H2 evolution over different photocatalytic systems[51].Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig.21 Framework structure of H20Cu(en)[Cu(en)2]11{[{[Cu(en)2]@{[Cu2(en)2(trz)2]6(Nb68O188)}}][4?Tzp]}2·22en·130H2O and the characterization of vapor sorption(A) The coordination environment of cage 1; (B) the coordination environment of cage 2; (C) 1D pillar-like chain formed by two diffe-rent cubic cages and 4-Tzp ligands; (D) view of the 3D framework of H20Cu(en)[Cu(en)2]11{[{[Cu(en)2]@{[Cu2(en)2(trz)2]6(Nb68O188)}}]·[4-Tzp]}2·22en·130H2O; (E) vapor sorption isotherms[52], Copyright 2020, American Chemical Society.
Fig.22 Framework structures of H12{[Cu(en)2]6[Nb68O176(OH)12(H2O)12]}·52H2O and H12{[Cu(en)2]10[Nb68O182(OH)8(H2O)10]}·54H2O(A) Polyhedral and ball-and-stick representations of H12{[Cu(en)2]6[Nb68O176(OH)12(H2O)12]}·52H2O; (B) polyhedral representation of {Nb68} cage; (C) polyhedral and ball-and-stick representations of H12{[Cu(en)2]10[Nb68O182(OH)8(H2O)10]}·54H2O; (D) view of the 3D framework of H12{[Cu(en)2]6[Nb68O176(OH)12(H2O)12]}·52H2O; (E) view of the 3D framework of H12{[Cu(en)2]10[Nb68O182(OH)8(H2O)10]}·54H2O.
No. | Formular | SBU | Property | Ref. |
---|---|---|---|---|
1 | [Cu(en)2]3[Cu(en)2(H2O)]9[{H2Nb6O19}@{[({KNb24O72H10.25}· {Cu(en)2})2{Cu3(en)3(H2O)3}{Na1.5Cu1.5(H2O)8}{Cu(en)2}4]6}]· 144H2O | {KNb24O72Nb6O19} | / | [ |
2 | [Cu(en)2]3{[Cu(en)2][H2V4Nb6O30]}·12H2O | {V4Nb6O30} | / | [ |
3 | [Cu(1, 2dap)2]4[H2V4Nb6O30]·16H2O | {V4Nb6O30} | / | [ |
4 | Na4[Cu(en)2(H2O)2]5[Na6Ge8Nb32O108H8(OH)4]·41H2O | {Ge4Nb16} | Pa | [ |
5 | [Cu(TETA)]4[VNb12(VO)4O40][OH]·10H2O | {VNb12(VO)4} | / | [ |
6 | [Cu(TETA)]4[VNb12(VO)6O40][OH]5·5H2O | {VNb12(VO)6} | / | [ |
7 | [Cu(en)2]4[PNb12O40(VO)6]·(OH)5·8H2O | {VPNb12(VO)6} | Pa | [ |
8 | [Cu(dap)2]4[PNb12O40(VO)6]·(OH)5·6H2O | {VPNb12(VO)6} | Pa | [ |
9 | [Cu(en)2(H2O)][Cu(en)2]4H{AsNb8V8O44}·11H2O | {AsNb8V8} | Pa | [ |
10 | [Co(dap)2]4[HPNb10VIV2O40(VIVO)4]·17H2O | {PNb10V2O40(VO)4} | Pa | [ |
11 | [Co(dap)2]5[PNb12O40(VIVO)6](OH)7·15H2O | {PNb12O40(VO)6} | Pa | [ |
12 | Na6K10[Cu(en)2]4[Eu12W12O36(H2O)24(H3Nb6O19)12]·solv | {Eu12W12O36(Nb6O19)12} | / | [ |
13 | {[Cu(en)2(H2O)]2(Nb3W3O19)][Cu]2}·OH | {Nb3W3O19} | Sb | [ |
14 | [Cu(dap)2]4[AsNb12O40(VO)4]·(OH)·7H2O | {AsNb12(VO)4} | Wc | [ |
15 | Na4K2H16[Cu(en)2]0.5{[Cu(en)2]9.5(K?H3Cu4(en)Nb78O222)} | {Cu4Nb78} | / | [ |
16 | [CuICuII3(μ3?OH)(H2O)6(trz)3]2(PW9Nb3O40)·13H2O | {PW9Nb3} | Md | [ |
17 | [CuICuII3(μ3?OH)(H2O)4(H?trz)(trz)3]2(PW9Nb3O40)·13H2O | {PW9Nb3} | Md | [ |
18 | [H3La8(H2O)32(C6H5NO2)6][SiW9Nb3O40]3·8H2O | {SiW9Nb3} | PLe | [ |
19 | H2Li5Na5K5[Cu(en)2][Nb47O128(OH)6(CO3)2]·20H2O | {Nb47} | Df | [ |
20 | {[Cu(en)2]@{[Cu2(trz)2(en)2]6[H10Nb68O188]}} | {[Cu2(trz)2(en)2]6Nb68} | Pa | [ |
Vg | ||||
21 | H3[Cu(en)2]4[VNb12O40(VO)2]·13H2O | {VNb12O40(VO)2} | Ch | [ |
22 | {[Ni(cyclam)]2H4Nb6O19}·12H2O | {Nb6O19} | / | [ |
23 | H9[Cu(en)(H2O)2][Cu(en)2]8[Dy(H2O)4]3[Nb24O69(H2O)3]2?36H2O | {[Dy(H2O)4]3[Nb24O69(H2O)3]2} | PCi | [ |
24 | H20Cu(en)[Cu(en)2]11{[{[Cu(en)2]@ {[Cu2(en)2(trz)2]6(Nb68O188)}}][4?Tzp]}2·22en·130H2O | {[Cu(en)2]@{[Cu2(en)2(trz)2]6(Nb68O188)}} | Vg | [ |
25 | [Cu(en)2(H2O)]2{[Cu(en)2]4[Cu(en)2]5{[Cu(en)2KNb24O72H10]2}·6en·70H2O. | {Cu(en)2KNb24O72H10} | Vg | [ |
26 | H12{[Cu(en)2]6[Nb68O176(OH)12(H2O)12]}·52H2O | {Nb68O200} | PCi | [ |
27 | H12{[Cu(en)2]10[Nb68O182(OH)8(H2O)10]}·54H2O | {Nb68O200} | PCi | [ |
28 | Ca2TMA2Nb10O28?5H2O | Ca?{Nb10O28} | / | [ |
29 | Sr2TMA2Nb10O28?4H2O | Sr?{Nb10O28} | / | [ |
30 | Ba2TMA2Nb10O28?9H2O | Ba?{Nb10O28} | / | [ |
31 | [Cu(en)2]2{[Cu(en)2]2Ba2K4(H2O)13(SiNb18O54)}2·3en·52H2O | {SiNb18O54} | PCi | [ |
32 | H6[Cu(en)2]2{[Cu(en)2]2Ba2Na(H2O)7(SiNb18O54)}2·3en·50H2O | {SiNb18O54} | PCi | [ |
Table 1 Summary of reported three-dimensional PONb frameworks
No. | Formular | SBU | Property | Ref. |
---|---|---|---|---|
1 | [Cu(en)2]3[Cu(en)2(H2O)]9[{H2Nb6O19}@{[({KNb24O72H10.25}· {Cu(en)2})2{Cu3(en)3(H2O)3}{Na1.5Cu1.5(H2O)8}{Cu(en)2}4]6}]· 144H2O | {KNb24O72Nb6O19} | / | [ |
2 | [Cu(en)2]3{[Cu(en)2][H2V4Nb6O30]}·12H2O | {V4Nb6O30} | / | [ |
3 | [Cu(1, 2dap)2]4[H2V4Nb6O30]·16H2O | {V4Nb6O30} | / | [ |
4 | Na4[Cu(en)2(H2O)2]5[Na6Ge8Nb32O108H8(OH)4]·41H2O | {Ge4Nb16} | Pa | [ |
5 | [Cu(TETA)]4[VNb12(VO)4O40][OH]·10H2O | {VNb12(VO)4} | / | [ |
6 | [Cu(TETA)]4[VNb12(VO)6O40][OH]5·5H2O | {VNb12(VO)6} | / | [ |
7 | [Cu(en)2]4[PNb12O40(VO)6]·(OH)5·8H2O | {VPNb12(VO)6} | Pa | [ |
8 | [Cu(dap)2]4[PNb12O40(VO)6]·(OH)5·6H2O | {VPNb12(VO)6} | Pa | [ |
9 | [Cu(en)2(H2O)][Cu(en)2]4H{AsNb8V8O44}·11H2O | {AsNb8V8} | Pa | [ |
10 | [Co(dap)2]4[HPNb10VIV2O40(VIVO)4]·17H2O | {PNb10V2O40(VO)4} | Pa | [ |
11 | [Co(dap)2]5[PNb12O40(VIVO)6](OH)7·15H2O | {PNb12O40(VO)6} | Pa | [ |
12 | Na6K10[Cu(en)2]4[Eu12W12O36(H2O)24(H3Nb6O19)12]·solv | {Eu12W12O36(Nb6O19)12} | / | [ |
13 | {[Cu(en)2(H2O)]2(Nb3W3O19)][Cu]2}·OH | {Nb3W3O19} | Sb | [ |
14 | [Cu(dap)2]4[AsNb12O40(VO)4]·(OH)·7H2O | {AsNb12(VO)4} | Wc | [ |
15 | Na4K2H16[Cu(en)2]0.5{[Cu(en)2]9.5(K?H3Cu4(en)Nb78O222)} | {Cu4Nb78} | / | [ |
16 | [CuICuII3(μ3?OH)(H2O)6(trz)3]2(PW9Nb3O40)·13H2O | {PW9Nb3} | Md | [ |
17 | [CuICuII3(μ3?OH)(H2O)4(H?trz)(trz)3]2(PW9Nb3O40)·13H2O | {PW9Nb3} | Md | [ |
18 | [H3La8(H2O)32(C6H5NO2)6][SiW9Nb3O40]3·8H2O | {SiW9Nb3} | PLe | [ |
19 | H2Li5Na5K5[Cu(en)2][Nb47O128(OH)6(CO3)2]·20H2O | {Nb47} | Df | [ |
20 | {[Cu(en)2]@{[Cu2(trz)2(en)2]6[H10Nb68O188]}} | {[Cu2(trz)2(en)2]6Nb68} | Pa | [ |
Vg | ||||
21 | H3[Cu(en)2]4[VNb12O40(VO)2]·13H2O | {VNb12O40(VO)2} | Ch | [ |
22 | {[Ni(cyclam)]2H4Nb6O19}·12H2O | {Nb6O19} | / | [ |
23 | H9[Cu(en)(H2O)2][Cu(en)2]8[Dy(H2O)4]3[Nb24O69(H2O)3]2?36H2O | {[Dy(H2O)4]3[Nb24O69(H2O)3]2} | PCi | [ |
24 | H20Cu(en)[Cu(en)2]11{[{[Cu(en)2]@ {[Cu2(en)2(trz)2]6(Nb68O188)}}][4?Tzp]}2·22en·130H2O | {[Cu(en)2]@{[Cu2(en)2(trz)2]6(Nb68O188)}} | Vg | [ |
25 | [Cu(en)2(H2O)]2{[Cu(en)2]4[Cu(en)2]5{[Cu(en)2KNb24O72H10]2}·6en·70H2O. | {Cu(en)2KNb24O72H10} | Vg | [ |
26 | H12{[Cu(en)2]6[Nb68O176(OH)12(H2O)12]}·52H2O | {Nb68O200} | PCi | [ |
27 | H12{[Cu(en)2]10[Nb68O182(OH)8(H2O)10]}·54H2O | {Nb68O200} | PCi | [ |
28 | Ca2TMA2Nb10O28?5H2O | Ca?{Nb10O28} | / | [ |
29 | Sr2TMA2Nb10O28?4H2O | Sr?{Nb10O28} | / | [ |
30 | Ba2TMA2Nb10O28?9H2O | Ba?{Nb10O28} | / | [ |
31 | [Cu(en)2]2{[Cu(en)2]2Ba2K4(H2O)13(SiNb18O54)}2·3en·52H2O | {SiNb18O54} | PCi | [ |
32 | H6[Cu(en)2]2{[Cu(en)2]2Ba2Na(H2O)7(SiNb18O54)}2·3en·50H2O | {SiNb18O54} | PCi | [ |
1 | Gouzerh P., Proust A., Chem. Rev., 1998, 98(1), 77—111 |
2 | Long D. L., Tsunashima R., Cronin L., Angew. Chem. Int. Ed., 2010, 49(10), 1736—1758 |
3 | Zheng S. T., Yang G. Y., Chem. Soc. Rev., 2012, 41(22), 7623—7646 |
4 | Zhao H. Y., Li Y. Z., Zhao J. W., Wang L., Yang G. Y., Coord. Chem. Rev., 2021, 443, 213966 |
5 | Lu J. K., He P. P., Niu J. Y., Wang J. P., Inorg. Chem. Front., 2019, 6(11), 3041—3056 |
6 | Song F. Y., Ding Y., Zhao C. C., Acta Chim. Sinica, 2014, 72(2), 133—144 |
7 | Li P. C., Ye S. H., Chen S. H., Xiong J. P., Wang L., Song Y. H., Asian J. Chem., 2013, 25(3), 1420—1424 |
8 | Chen Z. F., An H. Y., Zhang H., Hu Y., Crystengcomm, 2013, 15(23), 4711—4720 |
9 | Lv C. L., Khan R. N. N., Zhang J., Hu J. J., Hao J., Wei Y. G., Chem. Eur. J., 2013, 19(4), 1174—1178 |
10 | Chen W. L., Li Y. G., Wang Y. H., Wang E. B., Eur. J. Inorg. Chem., 2007, 15, 2216—2220 |
11 | Pang H. J., Zhang C. J., Chen Y. G., Hu M. X., Li J., J. Cluster Sci., 2008, 19(4), 631—640 |
12 | Kong Q. J., Zhang C. J., Chen Y. G., J. Mol. Struct., 2010, 964(1—3), 82—87 |
13 | Du J., Cao M. D., Feng S. L., Su F., Sang X. J., Zhang L. C., You W. S., Yang M., Zhu Z. M., Chem. Eur. J., 2017, 23(58), 14614—14622 |
14 | Skjaervo S. L., Ong G. K., Grendal O. G., Wells K. H., Van Beek W., Ohara K., Milliron D. J., Tominaka S., Grande T., Einarsrud M. A., Inorg. Chem., 2021, 60(11), 7632—7640 |
15 | Dopta J., Mahnke L. K., Bensch W., CrystEngComm, 2020, 22(19), 3254—3268 |
16 | Liang Z. J., Wu H. C., Singh V., Qiao Y. Y., Li M. M., Ma P. T., Niu J. Y., Wang J. P., Inorg. Chem., 2019, 58(19), 13030—13036 |
17 | Yuan L. B., He Y. P., Zhang L., Zhang J., Inorg. Chem., 2018, 57(8), 4226—4229 |
18 | Li X. X., Zhao D., Zheng S. T., Coord. Chem. Rev., 2019, 397, 220—240 |
19 | Martin N. P., Nyman M., Angew. Chem. Int. Ed., 2021, 60(2), 954—960 |
20 | Chen G., Wang C. Z., Ma P. T., Wang J. P., Niu J. Y., J. Cluster Sci., 2010, 21(2), 121—131 |
21 | Wang J. P., Niu H. Y., Niu J. Y., Inorg. Chem. Commun., 2008, 11(1), 63—65 |
22 | Guo G. L., Xu Y. Q., Hu C. W., J. Coord. Chem., 2010, 63(18), 3137—3145 |
23 | Niu J. Y., Ma P. T., Niu H. Y., Li J., Zhao J. W., Song Y., Wang J. P., Chem. Eur. J., 2007, 13(31), 8739—8748 |
24 | Wu Y. L., Li X. X., Qi Y. J., Yu H., Jin L., Zheng S. T., Angew. Chem. Int. Ed., 2018, 57(28), 8572—8576 |
25 | Tsunashima R., Long D. L., Miras H. N., Gabb D., Pradeep C. P., Cronin L., Angew. Chem. Int. Ed., 2010, 49(1), 113—116 |
26 | Zhu Z. K., Lin L. D., Zhang J., Li X. X., Sun Y. Q., Zheng S. T., Inorg. Chem. Front., 2020, 7(20), 3919—3924 |
27 | Müscher Polzin P., Näther C., Bensch W., Z. Naturforsch. B: Chem. Sci., 2020, 75(6/7), 583—588 |
28 | Wu P. X., Lai R. D., Ge R., Sun C., Wang G. Q., Li X. X., Zheng S. T., Inorg. Chem., 2021, 60(9), 6162—6166 |
29 | Zhang Z. Y., Lin Q. P., Kurunthu D., Wu T., Zuo F., Zheng S. T., Bardeen C. J., Bu X. H., Feng P. Y., J. Am. Chem. Soc., 2011, 133(18), 6934—6937 |
30 | Lin Y., Zhang T., Yan L. K., Su Z. M., Chem. J. Chinese Universities, 2013, 34(3), 615—620(林燕, 张婷, 颜力楷, 苏忠民. 高等学校化学学报, 2013, 34(3), 615—620) |
31 | Petel B. E., Matson E. M., Inorg. Chem., 2021, 60(10), 6855—6864 |
32 | Schreiber E., Hartley N. A., Brennessel W. W., Cook T. R., Mckone J. R., Matson E. M., Acs Appl. Energ. Mater., 2019, 2(12), 8985—8993 |
33 | Guo G. L., Xu Y. Q., Cao J., Hu C. W., Chem. Eur. J., 2012, 18(12), 3493—3497 |
34 | Shen J. Q., Yao S., Zhang Z. M., Wu H. H., Zhang T. Z., Wang E. B., Dalton Trans., 2013, 42(16), 5812—5817 |
35 | An W. J., Xu L., Chem. J. Chinese Universities, 2011, 32(3), 783—786(安文佳, 许林. 高等学校化学学报, 2011, 32(3), 783—786) |
36 | Wang X. N., Liu S. X., Li S. J., Xie R. H., Zhang X., Liu Y. W., Chem. J. Chinese Universities, 2013, 34(5), 1047—1051(王雪娜, 刘术侠, 李书军, 谢瑞红, 张鑫, 刘艺伟. 高等学校化学学报, 2013, 34(5), 1047—1051) |
37 | Han N., Xie R. H., Wang X. N., Liu S. X., Chem. J. Chinese Universities, 2018, 39(7), 1378—1383(韩宁, 谢瑞红, 王雪娜, 刘术侠. 高等学校化学学报, 2018, 39(7), 1378—1383) |
38 | Zhang X., Liu S. X., Li S. J., Wang X. N., Jin H. Y., Cui J. L., Liu Y. W., Liu C. Z., Chem. J. Chinese Universities, 2013, 34(9), 2046—2050(张鑫, 刘术侠, 李书军, 王雪娜, 金海燕, 崔佳丽, 刘艺伟, 刘成站. 高等学校化学学报, 2013, 34(9), 2046—2050) |
39 | Shen J. Q., Zhang Y., Zhang Z. M., Li Y. G., Gao Y. Q., Wang E. B., Chem. Commun., 2014, 50(45), 6017—6019 |
40 | Lan Q., Zhang Z. M., Li Y. G., Wang E. B., Rsc Adv., 2015, 5(55), 44198—44203 |
41 | Hu J. F., Wang Y., Zhang X. N., Chi Y. N., Yang S., Li J. K., Hu C. W., Inorg. Chem., 2016, 55(15), 7501—7507 |
42 | Li N., Liu Y. W., Lu Y., He D. F., Liu S. M., Wang X. Q., Li Y. G., Liu S. X., New J. Chem., 2016, 40(3), 2220—2224 |
43 | Jin L., Li X. X., Zhao D., Li H. H., Zheng S. T., CrystEngComm, 2016, 18(10), 1705—1708 |
44 | Jin L., Zhu Z. K., Wu Y. L., Qi Y. J., Li X. X., Zheng S. T., Angew. Chem. Int. Ed., 2017, 56(51), 16288—16292 |
45 | Weng Z. W., Ren Y. H., Gu M., Yue B., He H. Y., Dalton Trans., 2017, 47(1), 233—239 |
46 | Li S. J., Ji P. P., Han S. N., Hao Z. M., Chen X. N., Inorg. Chem. Commun., 2020, 111, 107666 |
47 | Zhong Z. H., Jing J. X., Sun Y. Q., Li X. X., Zheng S. T., Inorg. Chem. Commun., 2021, 132, 108813 |
48 | Yang M. S., Chen W. C., Qin C., Yao W., Yin Y. X., Su Z. M., New J. Chem., 2017, 41(19), 10532—10536 |
49 | Zhang J., Lai R. D., Wu Y. L., Zhu Z. K., Sun Y. Q., Zeng Q. X., Li X. X., Zheng S. T., Chem. Asian J., 2020, 15(10), 1574—1579 |
50 | Jin L., Li X. X., Qi Y. J., Niu P. P., Zheng S. T., Angew. Chem. Int. Ed., 2016, 55(44), 13793—13797 |
51 | Zhu Z. K., Lin Y. Y., Yu H., Li X. X., Zheng S. T., Angew. Chem. Int. Ed., 2019, 58(47), 16864—16868 |
52 | Huang P., Qin C., Su Z. M., Xing Y., Wang X. L., Shao K. Z., Lan Y. Q., J. Am. Chem. Soc., 2012, 134(34), 14004—14010 |
53 | Zhu Z. K., Lin Y. Y., Lin L. D., Li X. X., Sun Y. Q., Zheng S. T., Inorg. Chem., 2020, 59(17), 11925—11929 |
54 | Lin Y. D., Zhu Z. K., Ge R., Yu H., Li Z., Sun C., Sun Y. Q., Li X. X., Zheng S. T., Chem. Commun., 2021, 57(38), 4702—4705 |
55 | Li J. R., Xie Z. L., He X. W., Li L. H., Huang X. Y., Angew. Chem. Int. Ed., 2011, 50(48), 11395—11399 |
56 | Shen N. N., Cai M. L., Song Y., Wang Z. P., Huang F. Q., Li J. R., Huang X. Y., Inorg. Chem., 2018, 57(9), 5282—5291 |
57 | Chen X., Addicoat M., Irle S., Nagai A., Jiang D. L., J. Am. Chem. Soc., 2013, 135(2), 546—549 |
58 | Xiong W. W., Zhang Q. C., Angew. Chem. Int. Ed., 2015, 54(40), 11616—11623 |
[1] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[2] | YANG Jingyi, SHI Siqi, PENG Huaitao, YANG Qihao, CHEN Liang. Integration of Atomically Dispersed Ga Sites with C3N4 Nanosheets for Efficient Photo-driven CO2 Cycloaddition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220349. |
[3] | WANG Ruyue, WEI Hehe, HUANG Kai, WU Hui. Freezing Synthesis for Single Atom Materials [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220428. |
[4] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[5] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[6] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[7] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[8] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[9] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[10] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[11] | TANG Quanjun, LIU Yingxin, MENG Rongwei, ZHANG Ruotian, LING Guowei, ZHANG Chen. Application of Single-atom Catalysis in Marine Energy [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220324. |
[12] | HUANG Qiuhong, LI Wenjun, LI Xin. Organocatalytic Enantioselective Mannich-type Addition of 5H-Oxazol-4-ones to Isatin Derived Ketimines [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220131. |
[13] | TAN Yan, YU Shen, LYU Jiamin, LIU Zhan, SUN Minghui, CHEN Lihua, SU Baolian. Efficient Preparation of Mesoporous γ-Al2O3 Microspheres and Performance of Pd-loaded Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220133. |
[14] | HAN Fuchao, LI Fujin, CHEN Liang, HE Leiyi, JIANG Yunan, XU Shoudong, ZHANG Ding, QI Lu. Enhance of CoSe2/C Composites Modified Separator on Electrochemical Performance of Li-S Batteries at High Sulfur Loading [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220163. |
[15] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||