Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (6): 1965.doi: 10.7503/cjcu20200850
• Polymer Chemistry • Previous Articles Next Articles
LIU Xiaojin, LI Ting, WANG Yang, DONG Weifu()
Received:
2020-12-07
Online:
2021-06-10
Published:
2021-06-08
Contact:
DONG Weifu
E-mail:wfdong@jiangnan.edu.cn
Supported by:
CLC Number:
TrendMD:
LIU Xiaojin, LI Ting, WANG Yang, DONG Weifu. Preparation of Terpolymer Microspheres with Broad Band UV-blocking Performance[J]. Chem. J. Chinese Universities, 2021, 42(6): 1965.
Solvent | Solubility parameter/MPa1/2 | Polarity parameter | Result |
---|---|---|---|
Isoamyl acetate | 16.6 | 4.63 | Sediment |
Ethyl butyrate | 16.2 | 5.20 | Sediment |
Butyl acetate | 17.5 | 5.01 | Solution |
Ethyl acetate | 18.6 | 6.02 | Solution |
n?Amyl acetate | 17.1 | 4.75 | Sediment |
Ethyl benzoate | 16.8 | 5.98 | Dispersion |
Xylene | ca.18 | ca. 2.3 | Dispersion |
Solvent | Solubility parameter/MPa1/2 | Polarity parameter | Result |
---|---|---|---|
Isoamyl acetate | 16.6 | 4.63 | Sediment |
Ethyl butyrate | 16.2 | 5.20 | Sediment |
Butyl acetate | 17.5 | 5.01 | Solution |
Ethyl acetate | 18.6 | 6.02 | Solution |
n?Amyl acetate | 17.1 | 4.75 | Sediment |
Ethyl benzoate | 16.8 | 5.98 | Dispersion |
Xylene | ca.18 | ca. 2.3 | Dispersion |
V(EBZA)∶V(heptane) | Con.(%) | Particle diameter/nm | V(EBZA)∶V(heptane) | Con.(%) | Particle diameter/nm |
---|---|---|---|---|---|
10∶0 | 42.23 | 249±19 | 7∶3 | 49.60 | 483±28 |
9∶1 | 46.70 | 258±18 | 6∶4 | 49.50 | 575±24 |
8∶2 | 49.08 | 406±29 | 5∶5 | 43.84 | 748±25 |
V(EBZA)∶V(heptane) | Con.(%) | Particle diameter/nm | V(EBZA)∶V(heptane) | Con.(%) | Particle diameter/nm |
---|---|---|---|---|---|
10∶0 | 42.23 | 249±19 | 7∶3 | 49.60 | 483±28 |
9∶1 | 46.70 | 258±18 | 6∶4 | 49.50 | 575±24 |
8∶2 | 49.08 | 406±29 | 5∶5 | 43.84 | 748±25 |
n(VA)∶n(MA)∶n(NB) | Con.(%) | Particle diameter/nm |
---|---|---|
100∶99∶1 | 58.88 | 263±10 |
100∶97∶3 | 55.19 | 309±14 |
100∶95∶5 | 49.60 | 483±28 |
100∶93∶7 | 50.93 | 750±49 |
100∶91∶9 | 43.01 | 1434±213 |
n(VA)∶n(MA)∶n(NB) | Con.(%) | Particle diameter/nm |
---|---|---|
100∶99∶1 | 58.88 | 263±10 |
100∶97∶3 | 55.19 | 309±14 |
100∶95∶5 | 49.60 | 483±28 |
100∶93∶7 | 50.93 | 750±49 |
100∶91∶9 | 43.01 | 1434±213 |
Mass fraction of initiator(%) | Con.(%) | Particle diameter/nm |
---|---|---|
1.0 | 49.60 | 483±28 |
1.5 | 53.60 | 692±26 |
2.0 | 67.64 | 709±26 |
2.5 | 65.24 | 782±25 |
3.0 | 78.73 | 809±26 |
Mass fraction of initiator(%) | Con.(%) | Particle diameter/nm |
---|---|---|
1.0 | 49.60 | 483±28 |
1.5 | 53.60 | 692±26 |
2.0 | 67.64 | 709±26 |
2.5 | 65.24 | 782±25 |
3.0 | 78.73 | 809±26 |
cMonomer/(mol·L-1) | Con.(%) | Particle diameter/nm |
---|---|---|
0.50 | 28.49 | 486±26 |
1.00 | 49.60 | 483±28 |
1.25 | 45.69 | 792±43 |
1.50 | 58.35 | 874±43 |
2.00 | 58.51 | 1085±71 |
cMonomer/(mol·L-1) | Con.(%) | Particle diameter/nm |
---|---|---|
0.50 | 28.49 | 486±26 |
1.00 | 49.60 | 483±28 |
1.25 | 45.69 | 792±43 |
1.50 | 58.35 | 874±43 |
2.00 | 58.51 | 1085±71 |
Reaction temperature/℃ | Con.(%) | Particle diameter/nm |
---|---|---|
65 | 17.00 | 488±26 |
70 | 29.72 | 610±31 |
75 | 49.60 | 483±28 |
80 | 63.84 | 655±31 |
85 | 61.37 | 696±29 |
Reaction temperature/℃ | Con.(%) | Particle diameter/nm |
---|---|---|
65 | 17.00 | 488±26 |
70 | 29.72 | 610±31 |
75 | 49.60 | 483±28 |
80 | 63.84 | 655±31 |
85 | 61.37 | 696±29 |
Reaction time/min | Con.(%) | Particle diameter/nm |
---|---|---|
30 | 1.67 | 108±17 |
60 | 4.90 | 250±23 |
120 | 10.87 | 415±29 |
240 | 31.98 | 594±38 |
480 | 49.60 | 483±28 |
Reaction time/min | Con.(%) | Particle diameter/nm |
---|---|---|
30 | 1.67 | 108±17 |
60 | 4.90 | 250±23 |
120 | 10.87 | 415±29 |
240 | 31.98 | 594±38 |
480 | 49.60 | 483±28 |
Sample | ε250/(mL·mg-1·cm-1) | ε300/(mL·mg-1·cm-1) | ε350/(mL·mg-1·cm-1) | Reference |
---|---|---|---|---|
PO/BNPs | 0.5 | 2.4 | 0.2 | [ |
PTES24Ca | 1.9 | 3.5 | 2.3 | [ |
T 150?1 | 6.3 | 8.8 | 2.3 | [ |
(TA/TiO2)n?p?MS | 6.5 | 6.0 | 3.5 | [ |
NOL(CH/TA/CH/LS)5 | 6.5 | 5.5 | 4.5 | [ |
FSFMPsb | 15.0 | 22.0 | 18.0 | [ |
LL | 30.0 | 25.0 | 15.0 | [ |
PVMNc | 24.0 | 17.6 | 18.4 | This work |
Sample | ε250/(mL·mg-1·cm-1) | ε300/(mL·mg-1·cm-1) | ε350/(mL·mg-1·cm-1) | Reference |
---|---|---|---|---|
PO/BNPs | 0.5 | 2.4 | 0.2 | [ |
PTES24Ca | 1.9 | 3.5 | 2.3 | [ |
T 150?1 | 6.3 | 8.8 | 2.3 | [ |
(TA/TiO2)n?p?MS | 6.5 | 6.0 | 3.5 | [ |
NOL(CH/TA/CH/LS)5 | 6.5 | 5.5 | 4.5 | [ |
FSFMPsb | 15.0 | 22.0 | 18.0 | [ |
LL | 30.0 | 25.0 | 15.0 | [ |
PVMNc | 24.0 | 17.6 | 18.4 | This work |
1 | Tawiah B., Narh C., Li M., Zhang L. P., Fu S. H., Ind. Eng. Chem. Res., 2015, 54(47), 11858—11865 |
2 | Deng Y., Ediriwickrema A., Yang F., Lewis J., Girardi M., Saltzman W. M., Nat. Mater., 2015, 14, 1278—1285 |
3 | Zayat M., Garcia P. P., Levy D., Chem. Soc. Rev., 2007, 36(8), 1270—1281 |
4 | Serpone N., Dondi D., Albini A., Inorg. Chim. Acta, 2007, 360(3), 794—802 |
5 | Ahmad I., Kan C. W., Yao Z. P., RSC Adv., 2019, 9(32), 18106—18114 |
6 | Aguzzi C., Donnadio A., Quaglia G., Latterini L., Viseras C., Ambrogi V., ACS Appl. Nano Mater., 2019, 2(10), 6575—6584 |
7 | Huang X. J., Zeng X. F., Wang J. X., Zhang L. L., Chen F. J., Mater. Sci., 2019, 54(11), 8581—8590 |
8 | Zhang S. S., Li J., Guo X. P., Liu L. H., Wei H., Zhang Y. W., Appl. Surf. Sci., 2016, 382, 316—322 |
9 | Wang Y. R., Zhou B., Wang Z. C., Zhao X., Chem. J. Chinese Universities, 2012, 33(10), 2146—2151(王元瑞, 周兵, 王子忱, 赵旭. 高等学校化学学报, 2012, 33(10), 2146—2151) |
10 | Wang Y., Li T., Ma P. M., Bai H. Y., Xie Y., Chen M. Q., Dong W. F., ACS Sustain. Chem. Eng., 2016, 4(4), 2252—2258 |
11 | Chen H., Li R., Xu X. Y., Zhao P. C., Yan X., Wong D. S. H., Chen X. Y., Chen S. J., Yan X. H., J. Mater. Sci., 2019, 54(2), 1236—1247 |
12 | Abitbol T., Ahniyaz A., Álvarez A. R., Fall A., Swerin A., ACS Appl. Bio. Mater., 2020, 3(4), 2245—2254 |
13 | Dong Y., Chen S. S., Zhou S. L., Hou S. L., Lu Q. H., ACS Mater. Lett., 2019, 1(3), 336—343 |
14 | Xie Z., Du Q., Wu Y., Hao X., Liu C., J. Mater. Chem. C, 2016, 4(41), 9879—9886 |
15 | Hayden D. R., Imhof, A., Velikov K. P., ACS Appl. Mater. Interfaces, 2016, 8(48), 32655—32660 |
16 | Xing C. M., Yang W. T., Macromol. Rapid Commun., 2004, 25(17), 1568—1574 |
17 | Hu C. X. , Ru Y., Guo Z. Y., Liu Z. J., Song J. H., Song W. B., Zhang X. H., Qiao J. L., J.Mater. Chem. C, 2019, 7(2), 387—393 |
18 | Wang Y. D., Chen D., Wang G., Zhao C. W., Ma Y. H., Yang W. T., Chem. Eng. J., 2018, 336, 152—159 |
19 | Huang X. G., Wang L., Yang W. T., Polym. Chem., 2015, 6(37), 6664—6670 |
20 | Cao L. J., Yin M. Z., Ma Y. H., Yang W. T., Acta Polym. Sin.,2012, (1), 75—82(曹莉娟, 尹梅贞, 马育红, 杨万泰. 高分子学报, 2012, (1), 75—82) |
21 | Luo W., Liu J. X., Ma Y. H., Zhang B., Yang W. T., J. Polym. Sci. Pol. Chem., 2012, 50(17), 3606—3617 |
22 | Zhang C., Chen D., Yang W. T., Ind. Eng. Chem. Res., 2020, 59(33), 15087—15097 |
23 | Can H. K., Dog˘an A. L., Rzaev Z. M. O., Uner A. H., Güner A., J. Appl. Polym. Sci., 2006, 100, 3425—3432 |
24 | Ajithkumar M. P., Yashoda M. P., Prasannakumar S., Sruthi T. V., Kumar V. B. S., J. Macromol. Sci. A, 2018,55(4), 362—368 |
25 | Kidsaneepoiboon P., Wanichwecharungruang S. P., Chooppawa T., Deephum R., Panyathanmaporn T., Mater. Chem., 2011, 21(22), 7922—7930 |
26 | Shi L., Shan J. N., Jub Y., Aikens P., Robert K. P., Colloids and Surfaces A: Physicochem. Eng. Aspects, 2012, 396, 122—129 |
27 | Son H. Y., Koo B. I., Lee J. B., Kim K. R., Kim W., Jang J. H., Yoon M. S., Cho J. W., Nam, Y. S., ACS Appl. Mater. Interfaces,2018, 10(32), 27344—27354 |
28 | Piccinino D., Capecchi E., Botta L., Bizzarri B. M., Bollella P., Antiochia R., Saladino R., Biomacromolecules,2018,19(9), 3883—3893 |
29 | Li S. X., Li M. F., Bian J., Wu X. F., Peng F., Ma M. G., Int. J. Biol. Macromol.,2019, 132, 836—843 |
[1] | WANG Xuebin, XUE Yuan, MAO Hua’nyu, XIANG Yanxin, BAO Chunyan. Preparation of Photo/reduction Dual-responsive Hydrogel Microspheres and Their Application in Three-dimensional Cell Culture [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220116. |
[2] | TAN Yan, YU Shen, LYU Jiamin, LIU Zhan, SUN Minghui, CHEN Lihua, SU Baolian. Efficient Preparation of Mesoporous γ-Al2O3 Microspheres and Performance of Pd-loaded Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220133. |
[3] | YU Pengdong, GUAN Xinghua, WANG Dongdong, XIN Zhirong, SHI Qiang, YIN Jinghua. Preparation and Properties of Novel Optical and Thermal Dual Response Shape Memory Polymers [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220085. |
[4] | FAN Ye, HAN Huihui, FANG Yun, FENG Ruiqin, XIA Yongmei. Facile Synthesis of Hollow Nickel Submicrospheres with Hierarchical Nano-structure and Its Catalytic Hydrogenation of Phenol [J]. Chem. J. Chinese Universities, 2021, 42(6): 1801. |
[5] | LI Boxin, YANG Junge, YIN Dezhong, GAO Chengqian, ZHANG Qiuyu. Preparation of Large-sized Microencapsulated Phase Change Materials Through Pickering Emulsion Stabilized by Monodisperse Polymer Microspheres [J]. Chem. J. Chinese Universities, 2020, 41(9): 2085. |
[6] | WANG Rui,XU Mei,XIE Jiawen,YE Shengying,SONG Xianliang. Effects of Hydrothermal Reaction Conditions on the Structure and Properties of Porous Spherical Bi2WO6 Photocatalyst [J]. Chem. J. Chinese Universities, 2020, 41(6): 1320. |
[7] | ZHU Pei,WANG Feng,CHEN Zheming,LI Gen,GAO Chong,LIU Peng,DING Yanfen,ZHANG Shimin,CHEN Juan,YANG Mingshu. Preparation of Armor Structure Polystyrene@Magnesium Hydroxide Composite Microspheres by Pickering Suspension Polymerization with Nano-magnesium Hydroxide as Pickering Stabilizer [J]. Chem. J. Chinese Universities, 2020, 41(3): 556. |
[8] | LI Jiefeng,ZHAO Jianhong,ZHAO Yongxiang. Fabrication of Tandem PMMA Photonic Crystal Films by Flow-controled Deposition Method and Study of Their Optical Properties † [J]. Chem. J. Chinese Universities, 2020, 41(2): 293. |
[9] | FENG Wei,WANG Bowei,JIANG Yang,LI Longyun. Design, Preparation and Surface-enhanced Raman Scattering(SERS) Spectrum of Single Ag Nanodot† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1345. |
[10] | LIN Weiguo,SUN Weihang,QU Zongkai,FENG Xiaolei,RONG Junfeng,CHEN Xu,YANG Wensheng. Preparation and Performance of Nano-porous Si/Graphite/C Composite Microspheres as Anode Material for Li-ion Batteries† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1216. |
[11] | GONG Minghui,YANG Shanshan,LI Shusheng,KUANG Rui,KONG Xiangzheng. Preparation of Fluorescence Polyurea Microspheres Through Precipitation Polymerization and Their Use for Fe3+ Determination† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1317. |
[12] | DUAN Yajun,CHENG Yanyan,SUI Guanghui,ZHU Yanchao,WANG Xiaofeng,GUO Yupeng,WANG Zichen. Lignin Impacts on the Lignin-urea-formaldehyde Copolymer Resin and the Reaction Mechanism† [J]. Chem. J. Chinese Universities, 2019, 40(5): 1058. |
[13] | HUANG Xiaolin,XIE Huan,CAO Hong,JIN Hongjie,LI Chun,WU Tinghua. Preparation, Characterization of Magnetic Core Gel Microspheres Loaded Ionic Liquids and Its Application in Cells Immobilization Technique† [J]. Chem. J. Chinese Universities, 2019, 40(4): 793. |
[14] | TANG Bo,HUANG Hao,WU Bing,LI Xu,WANG Xiaogong. Self-assembled Azo Molecular Glass Microspheres with Rapid Photoinduced Deformation† [J]. Chem. J. Chinese Universities, 2019, 40(3): 548. |
[15] | DUAN Bingyi,WANG Yu,GUO Ningning,WANG Runwei,ZHANG Zongtao,QIU Shilun. Preparation of Yolk-shell Fe3O4@SiO2@PMO Magnetic Microspheres for Laccase Immobilization† [J]. Chem. J. Chinese Universities, 2019, 40(2): 210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||