Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (7): 1345.doi: 10.7503/cjcu20190032
• Article: Inorganic Chemistry • Previous Articles Next Articles
FENG Wei1, WANG Bowei2, JIANG Yang1, LI Longyun1,*()
Received:
2019-01-14
Online:
2019-06-28
Published:
2019-07-09
Contact:
LI Longyun
E-mail:lilongyun1968@163.com
Supported by:
CLC Number:
TrendMD:
FENG Wei,WANG Bowei,JIANG Yang,LI Longyun. Design, Preparation and Surface-enhanced Raman Scattering(SERS) Spectrum of Single Ag Nanodot†[J]. Chem. J. Chinese Universities, 2019, 40(7): 1345.
Fig.1 SEM images of the silver nanodots(A) Ag deposition thickness 25 nm, etching time 60 min; (B) Ag deposition thickness 50 nm, etching time 30 min;(C) Ag deposition thickness 100 nm, etching time 40 min; (D) Ag deposition thickness 200 nm etching time 50 min.
Fig.5 SERS spectrum of rhodamine 6G monolayer on a single Ag nanodotWith 5-bilayer films of PSS/PDDA as the spacer on the Ag nanodots array, the outer layer is modified by PSS-TRITC, accumulation time is 10 s, single scan, excitation at 514.5 nm, 0.6 mW.
Fig.6 UV-Vis absorption(a) and fluorescence emission(b) of R6G(A) and PSS-TRITC(B) and UV-Vis absorption of PSS-TRITC(a) and fluorescence emission(b) of R6G(C)All the emission spectra are excited at 515 nm.
Fig.7 SERS spectra of rhodamine 6G monolayer on a single Ag nanoparticlea. Ag+[PDDA/PSS]5+PSS-R6G; b. Ag+[PDDA/PSS]5+PSS-R6G+R6G; c. Ag+[PDDA/PSS]5+PSS-R6G. Five bilayer films as spacer on the Ag nanodots array, accumulation time is 10 s, single scan, excitation at 514.5 nm, 0.6 mW. The outer layer is modified by PSS-TRITC but with dropping R6G sample (a), the outer layer is modified by PSS-TRITC, and followed by dropping R6G sample (b) and the outer layer is modified by PSS and followed by dropping the R6G sample(c).
Fig.8 Raman spectrum of pyridineExcited at 514.5 nm, the laser power is 3.93 mW, 10 s, single scan. It is recorded to calculate the enhancement factor of the single Ag nanodot.
Fig.9 Raman spectrum of thiol benzeneExcited at 514.5 nm, the laser power is 5.03 mW, 10 s, single scan. It is recorded to calculate the enhancement factor of the single Ag nanodot.
Probe | Raman shift/cm-1 | GSERS |
---|---|---|
Pyridine | 1006 | 5.83×106 |
Pyridine | 1035 | 6.95×106 |
Benzenethiol | 418 | 2.05×106 |
Benzenethiol | 998 | 1.89×106 |
Benzenethiol | 1021 | 2.26×106 |
Benzenethiol | 1573 | 6.51×106 |
Table 1 Raman enhancement factor of Ag nanoparticle(λex=514.5 nm)
Probe | Raman shift/cm-1 | GSERS |
---|---|---|
Pyridine | 1006 | 5.83×106 |
Pyridine | 1035 | 6.95×106 |
Benzenethiol | 418 | 2.05×106 |
Benzenethiol | 998 | 1.89×106 |
Benzenethiol | 1021 | 2.26×106 |
Benzenethiol | 1573 | 6.51×106 |
[1] | Kneipp K., Wang Y., Kneipp H., Perelman L. T., Itzkan I.,Dasari R. R., Feld M. S., Phys. Rev. Lett., 1997, 78, 1667—1670 |
[2] | Nie S. M., Emory S. R., Science, 1997, 275, 1102—1106 |
[3] | Xu H., Aizpurua J., Kall M., Apell P., Phys. Rev. E, 2000, 62, 4318—4324 |
[4] | Li K., Stockman M. I., Bergman D. J., Phys. Rev. Lett., 2003, 91, 227402 |
[5] | Hu H., Wang X. H., Persson M. P., Xu H. Q., Kall M.,Johnansson P., Phys. Rev. Lett., 2004, 93, 243002 |
[6] | Hao E., Schatz G. C., J. Chem. Phys., 2004, 120, 357—366 |
[7] | Hallock A.J., Redmond P. L., Brus L. E., Proc. Natl. Acad. Sci., USA, 2005, 102, 1280—1284 |
[8] | Shegai T.O., Haran G., J. Phys. Chem. B, 2006, 110, 2459—2461 |
[9] | Halvorson R. A., Vikesland P. J., Environ. Sci. Technol., 2010, 44(20), 7749—7755 |
[10] | Kneipp K., Kneipp H., Itzkan I., Dasari R. R., Feld M. S., Chem. Rev., 1999, 99, 2957—2975 |
[11] | Yonzon C. R., Haynes C. L., Zhang X., Walsh J. T. Jr., van Duyne R. P., Anal. Chem., 2004, 76, 78—85 |
[12] | Haes A.J., Zou S., Schatz G. C., van Duyne R. P., J. Phys. Chem. B, 2004, 108, 109—116 |
[13] | Jackson J.B., Halas N. J., Proc. Natl. Acad. Sci. USA, 2004, 101, 17930—17935 |
[14] | Zhang Y., Gu C., Schwartzberg A. M., Zhang J. Z., Appl. Phys. Lett., 2005, 87, 123105 |
[15] | Svedberg F., Li Z., Xu H., Kall M., Nano. Lett., 2006, 6, 2639—2641 |
[16] | Jensen T.R., Malinsky M. D., Haynes C. L., van Duyne R. P., J. Phys. Chem. B, 2000, 104, 10549—10556 |
[17] | Wu D. Y., Li J. F.,Ren B., Tian Z. Q., Chem. Soc. Rev., 2008, 37, 1025—1041 |
[18] | Forster T., Discuss. Faraday Soc., 1959, 27, 7—17 |
[19] | Andrews D. L., Demidov A. A., Resonance Energy Transfer, John Wiley & Sons,, 1999 |
[20] | Zhang G., Zhao Z., Wang D., Chem. J. Chinese Universities, 2010, 31(5), 839—854 |
(张刚, 赵志远, 汪大洋. 高等学校化学学报, 2010, 31(5), 839—854) | |
[21] | Ai B., Mohwald H., Wang D. Y., Zhang G., Adv. Mater. Interfac., 2017, 4, 1600271 |
[22] | Feng W., Wang B. W., Zheng Y., Jiang Y., Chem. J. Chinese Universities, 2018, 39(9), 1875—1880 |
(冯微, 王博蔚, 郑艳, 姜洋. 高等学校化学学报, 2018, 39(9), 1875—1880) | |
[23] | Zhang G., Wang D. Y., Mohwald H., Nano Letters, 2005, 5(1), 143—146 |
[24] | Zhang G., Wang D. Y., Mohwald H., Angew. Chem. Int. Ed., 2005, 44(47), 7767—7770 |
[25] | Li X.Y., Huang Q. J., Vladimir I. P., Xie Y. T., Luo Q., Yu X., Yan Y. J., J. Raman Spectrosc., 2005, 36, 555—573 |
[26] | Lee I., Han S. W., Kim K., J. Raman Spectrosc., 2001, 32, 947—952 |
[27] | Carron K. T., Hurley L. G., J. Phys. Chem. B, 1991, 95, 9979—9984 |
[28] | Szafranski C.A., Tanner W., Laibinis P. E., Garrell R. L., Langmuir, 1998, 14, 3570—3579 |
[29] | Joo T. H., Kim M. S. Kim K., J. Raman Spectrosc., 1987, 18, 57—60 |
[30] | Gui J.Y., Stern D. A., Frank D. Lu G., F., Zapien D. C., Hubbard A. T., Langmuir, 1997, 7, 955—963 |
[31] | Uehara J., Aramaki K., J. Electrochem. Soc., 1991, 138, 3245—3251 |
[32] | Campion A., Kambhampati P., Chem. Soc. Rev., 1998, 27, 241—250 |
[33] | Ling X., Xie L., Fang Y., Xu H., Zhang H., Kong J., Dresselhaus M. S., Zhang J.,Liu Z., Nano Lett., 2010, 10, 553—561 |
[34] | Ding S. Y., You E. M.,Tian Z. Q. and Moskovits M., Chem. Soc. Rev., 2017, 46, 4042—4076 |
[35] | Hildebrandt P., Stockburger M., J. Phys. Chem., 1984, 88, 5935—5944 |
[36] | Majoube M., Henry M., Spectrochim. Acta, 1991, 47A, 1459—1466 |
[37] | Li W. H., Li X. Y.,Yu N. T., Chem. Phys. Lett., 1999, 312, 28—36 |
[1] | FENG Wei,WANG Bowei,ZHENG Yan,JIANG Yang. Preparation and Surface-enhanced Raman Scattering(SERS) of Single Au Nanodot† [J]. Chem. J. Chinese Universities, 2018, 39(9): 1875. |
[2] | DENG Caisong, PAN Tingting, DU Lan, WANG Ming, NI Haibin, NI Xiaoqi. Fabrication of Monolayer Crystalline Films on Optical Fiber End by Micro-flow Injection Method† [J]. Chem. J. Chinese Universities, 2018, 39(4): 708. |
[3] | LIU Huiqiang, PENG Chao, CHEN Ning, LIU Yangping. Novel Fluorescent/EPR Difunctional Probe for Detecting Hypochlorite† [J]. Chem. J. Chinese Universities, 2017, 38(9): 1542. |
[4] | LIANG Xue-Ying, LIU Qiong, CHEN Ping, HUO Ke-Ke, HU Tian-Yong, NI Jia-Zuan. Screen and Verification of Interactive Protein of Selenoprotein K in Human Liver [J]. Chem. J. Chinese Universities, 2012, 33(02): 313. |
[5] | WANG Xiao-Dong*, YI Gui-Yun. Preparation of SiO2 Ordered Macroporous Material by Floating Assembly Method [J]. Chem. J. Chinese Universities, 2007, 28(9): 1759. |
[6] | SHEN Yan-Ling, YANG Yun-Feng, GAO Bao-Jiao, LI Gang. New Method of Preparing Chloromethylated Crosslinking Polystyrene Microspheres [J]. Chem. J. Chinese Universities, 2007, 28(3): 580. |
[7] | ZHANG Ji-Mei1, DAI Zhao1, GUO Ning1, XU Shi-Chao1, DONG Quan-Xi1, SUN Bo2. Fluorescence Resonance Energy Transfer Between CdTe Quantum Dot Donors and Au Nanoparticles Labeled DNA Acceptors [J]. Chem. J. Chinese Universities, 2007, 28(2): 254. |
[8] | WAN Hui-Xin, CHEN Li-Li, LI Xin, WANG Xin, HU Ding-Yu, SHEN Xu, SHEN Jing-Kang. Design and Synthesis of a Novel Fluorescent Peptide Substrate of SARS-CoⅤ 3CLpro and Studies on Its Enzymatic Kinetics [J]. Chem. J. Chinese Universities, 2007, 28(1): 79. |
[9] | HU Jian-Hua, WANG Chang-Chun, YANG Wu-Li, MING Wei-Hua, FU Shou-Kuan. Preparation and Photoconductivity of C60-containing Polystyrene Microspheres [J]. Chem. J. Chinese Universities, 1998, 19(8): 1349. |
[10] | ZHAO Jun, MING Wei-Hua, LU Xu-Liang, WANG Chang-Chun, FU Shou-Kuang. Novel Characteristics of Pauci-Chain Polystyrene Microsphere [J]. Chem. J. Chinese Universities, 1995, 16(12): 1960. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||