Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (2): 293.doi: 10.7503/cjcu20190482
• Physical Chemistry • Previous Articles Next Articles
LI Jiefeng,ZHAO Jianhong(),ZHAO Yongxiang(
)
Received:
2019-09-10
Online:
2020-02-10
Published:
2019-12-19
Contact:
Jianhong ZHAO,Yongxiang ZHAO
E-mail:zhaojianghong@sxu.edu.cn;yxzhao@sxu.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Jiefeng,ZHAO Jianhong,ZHAO Yongxiang. Fabrication of Tandem PMMA Photonic Crystal Films by Flow-controled Deposition Method and Study of Their Optical Properties †[J]. Chem. J. Chinese Universities, 2020, 41(2): 293.
Fig.1 Schematic of colloidal crystals arranged by vertical self-assembly Vc: the growth rate of the product; Vw: the withdrawal rate of the substrate plate.
Sample | V(H2O)/mL | V(MMA)/mL | Temperature/℃ | Size/nm | Standard deviation | |
---|---|---|---|---|---|---|
PMMA-1 | 240 | 45 | 0.225 | 80 | 318 | 0.0084 |
PMMA-2 | 240 | 45 | 0.225 | 70 | 401 | 0.0073 |
PMMA-3 | 240 | 60 | 0.225 | 70 | 454 | 0.0104 |
Sample | V(H2O)/mL | V(MMA)/mL | Temperature/℃ | Size/nm | Standard deviation | |
---|---|---|---|---|---|---|
PMMA-1 | 240 | 45 | 0.225 | 80 | 318 | 0.0084 |
PMMA-2 | 240 | 45 | 0.225 | 70 | 401 | 0.0073 |
PMMA-3 | 240 | 60 | 0.225 | 70 | 454 | 0.0104 |
Fig.2 SEM images showing top view, side view(inset)(A—E) and digital photographs(F, G) of PMMA photonic crystals assembled by PMMA microspheres with a diameter of 401 nm(PMMA-2) Concentration of PMMA colloidal suspension(wPMMA) and velocity of pump(Vp)/(mL·min-1): (A) 0.6%, 0.23; (B) 0.6%, 0.34; (C) 0.6%, 0.45; (D) 0.8%, 0.45; (E) 1.0%, 0.45. Digital photographs from left to right correspond to samples shown in (A)—(E): (F) vertically; (G) at 45° reflection angle under natural light.
Fig.3 SEM images showing top view, side view(insets, up) and digital photographs(insets, down) of PMMA-2 photonic crystal thin films, optimized wPMMA-Vp conditions for assembling stable high-quality PMMA photonic crystal thin films(C) and relationship between assembly conditions and PMMA photonic crystal thinkness(D) Assembly conditions: (A) Vp=0.23 mL/min, wPMMA=0.4%; (B) Vp=0.67 mL/min, wPMMA=1.2%.
Fig.5 UV-Vis transmittance spectra of PMMA-2(A—C) and PMMA-1(a), PMMA-2(b) and PMMA-3(c)(D) photonic crystal in air showing photonic bandgaps along the [111] direction wPMMA(%) and Vp/(mL·min-1): (A) a. 0.6%, 0.23; b. 0.6%, 0.34; c. 0.6%, 0.45. (B) a. 0.6, 0.45; b. 0.8%, 0.45; c. 1.0%, 0.45. (C) a. 0.4%, 0.23; b. 0.6%, 0.34; c. 0.8%, 0.45; d. 1.2%, 0.67. (D) 0.6%, 0.34.
Fig.6 SEM images(A, B, D, E) and UV-Vis transmittance spectra(C, F) of tandem PMMA-2/1(A—C) and PMMA-2/3(D—F) photonic crystal films (A, D) Top view; (B, E) cross-sectional view. (C) a. +PMMA-2/1; b. -PMMA-2/1; (F) a. +PMMA-2/3; b. -PMMA-2/3.
[1] | Liu J., Zhao H., Wu M., Vander S. B., Li Y., Deparis O., Ye J. H., Hasan T., Su B. L., Adv. Mater., 2017,29(17), 1— 21 |
[2] | By T. Y., Honda M., Seki T., Adv. Mater., 2009,21(18), 1801— 1804 |
[3] | Waterhouseab G. I. N., Waterland M. R., Poly., 2007,26(2), 356— 368 |
[4] | Kim S. H., Lee S. Y., Yang S. M., Yi G. R., NPG Asia Mater., 2011,3(1), 25— 33 |
[5] | Mariano C., Schneider J., Bahnemann D. W., Mendive C. B., J. Phys. Chem. Lett., 2015,6(19), 3903— 3910 |
[6] | Torralvo F. M. J., Eduardo E., Sandra M., Isabel S., Jesus S., Dino T., Javier S., Sedat Y., Giovanni P., Vincenzo A., ACS Appl. Nano Mater., 2018,1(6), 2567— 2578 |
[7] |
Ling H., Yeo L. P., Wang Z. W., Li X. L., Daniel M., Shlomo M., Alfred Y. T., J. Mater. Chem. C, 2018,6(31), 8488— 8494
doi: 10.1039/C8TC01954A URL |
[8] | Jung W. L., Jun H. M., Nanoscale, 2015,7(12), 5164— 5168 |
[9] | Farid M., Alireza S., RSC Adv., 2015,5(17), 12536— 12545 |
[10] | An N., Ma Y. W., Liu J. M., Ma H. M., Yang J. C., Zhang Q. C., Chinese Journal of Catalysis, 2018,39(12), 1890— 1900 |
[11] | Song X. Y., Li W. Q., He D., Wu H. Y., Ke Z. J., Jiang C. Z., Wang G. M., Xiao X. M., Adv. Energy Mater., 2018,8(20), 1— 8 |
[12] | Zhao Y. J., Xie Z. Y., Gu H. C., Zhu C., Gu Z. Z., Chem. Soc. Rev., 2012,41(8), 3297— 3317 |
[13] | Yi S. S., Zhang X. B., Wulan B. R., Yan J. M., Jiang Q., Energy Environ. Sci., 2018,11(11), 3128— 3156 |
[14] | Trung D. N., Jankowsk E., Sharon C. G., ACS Na no., 2011,5(11), 8892— 8903 |
[15] |
Geoffffrey W., Wanting C., Andrew C., Haishun J., Sun W. D., Bruce C., Chem. Mater., 2008,20(3), 1183— 1190
doi: 10.1021/cm703005g URL |
[16] | Kim O. H., Yong H. C., Soon H. K., Hee Y. P., Minhyoung K., Ju W. L., Dong Y. C., Myeong J. L., Heeman C., Yung E. S., Nat.Commun., 2013,4(2473), 1— 9 |
[17] | Jia F., Sun W., Zhang J. H., Li Y. F., Yang B., J. Mater. Chem., 2012,22(6), 2435— 2441 |
[18] | Antony S. D., Kuniaki N., Langmuir, 1996,12(5), 1303— 1311 |
[19] |
Zhou Z. C., Zha X. S., Langmuir, 2004,20(4), 1524— 1526
doi: 10.1021/la035686y URL |
[20] |
Rick C. S., Mohammed D., Christopher F. B., Andreas S., Chem. Mater., 2002,14(8), 3305— 3315
doi: 10.1021/cm020100z URL |
[21] |
Jiang P., Bertone J. F., Hwang K. S., Colvin V. L., Chem. Mater., 1999,11(8), 2132— 2140
doi: 10.1021/cm990080+ URL |
[1] | YANG Jingyi, SHI Siqi, PENG Huaitao, YANG Qihao, CHEN Liang. Integration of Atomically Dispersed Ga Sites with C3N4 Nanosheets for Efficient Photo-driven CO2 Cycloaddition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220349. |
[2] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[3] | SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao. Preparation of CuO/BiVO4 Photocatalyst and Research on Carbon Dioxide Reduction [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220126. |
[4] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[5] | XI Jing, CHEN Na, YANG Yanbing, YUAN Quan. Recent Progress in Controlled Synthesis of Persistent Luminescence Nanomaterials for Diagnosis Applications [J]. Chem. J. Chinese Universities, 2021, 42(11): 3247. |
[6] | SUN Yaguang, ZHANG Hanyan, MING Tao, XU Baotong, GAO Yu, DING Fu, XU Zhenhe. Synthesis of ZnIn2S4/g-C3N4 Nanocomposites with Efficient Photocatalytic H2 Generation Activity by a Simple Hydrothermal Method [J]. Chem. J. Chinese Universities, 2021, 42(10): 3160. |
[7] | LI Chenchen, NA Yong. g-C3N4/CdS/Ni Composite as a Bifunctional Photocatalyst for H2 Generation and 5-Hydroxymethylfurfural Oxidation [J]. Chem. J. Chinese Universities, 2021, 42(9): 2896. |
[8] | WU Qiliang, MEI Jinghao, LI Zheng, FAN Haidong, ZHANG Yanwei. Photo-thermal Coupling Water Splitting over Fe-doped TiO2 with Various Nanostructures [J]. Chem. J. Chinese Universities, 2021, 42(6): 1837. |
[9] | ZHU Qichen, XIONG Ming, TAO Siyu, TANG Siwei, REN Qizhi. Effect of Light Source on the Photocatalytic Performance of Dihydroxynaphthalene by Water-soluble Sulfonated Porphyrins [J]. Chem. J. Chinese Universities, 2021, 42(6): 1933. |
[10] | YANG Sixian, ZHONG Wenyu, LI Chaoxian, SU Qiuyao, XU Bingjia, HE Guping, SUN Fengqiang. Photochemical Fabrication and Performance of Polyaniline Nanowire/SnO2 Composite Photocatalyst [J]. Chem. J. Chinese Universities, 2021, 42(6): 1942. |
[11] | WEI Hong, YANG Xiaoyu, LI Kebin, HAO Miao, FU Ran. Enhancement Effect of Low-power Ultrasound on Iopamidol Chlorination and the Degradation Pathway [J]. Chem. J. Chinese Universities, 2021, 42(6): 1863. |
[12] | LI Dongping, LI Bin, LI Changheng, YU Xuegang, SHAN Yan, CHEN Kezheng. Synthesis and Enhanced Photocatalytic Activity of Ni5P4/g-C3N4 [J]. Chem. J. Chinese Universities, 2021, 42(4): 1292. |
[13] | GUI Chen, WANG Haolin, SHAO Baixuan, YANG Yujing, XU Guangqing. Molten-salt-assistance Synthesis and Photocatalytic Hydrogen Evolution Performances of g-C3N4 Nanostructures [J]. Chem. J. Chinese Universities, 2021, 42(3): 827. |
[14] | MA Zihui, WANG Mengyan, CAO Hongyu, TANG Qian, WANG Lihao, ZHENG Xuefang. Transient Absorption and Decay Kinetic Properties of Photo-excited Metal Coordinated Tetraphenylporphyrin [J]. Chem. J. Chinese Universities, 2021, 42(3): 767. |
[15] | ZHAO Yuhui, LI Mingle, LONG Saran, FAN Jiangli, PENG Xiaojun. Spectroscopic Characterization of Solvation Effect for a Polarity-Sensitive BDP [J]. Chem. J. Chinese Universities, 2020, 41(9): 2018. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||