Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (1): 217.doi: 10.7503/cjcu20200418
Special Issue: 分子筛功能材料 2021年,42卷,第1期
• Review • Previous Articles Next Articles
JIN Shaoqing, SUN Hongmin, YANG Weimin()
Received:
2020-07-01
Online:
2021-01-10
Published:
2021-01-12
Contact:
YANG Weimin
E-mail:yangwm.sshy@sinopec.com
Supported by:
CLC Number:
TrendMD:
JIN Shaoqing, SUN Hongmin, YANG Weimin. Applications of Zeolite Catalysts in Chemical Industry[J]. Chem. J. Chinese Universities, 2021, 42(1): 217.
1 | Xu R. R., Pang W. Q., Huo Q. S., Yu J. H., Chen J. S., Su B. L., Qiu S. L., Yan W. F., Chemistry of Zeolites and Related Porous Materials(Second Edition), Science Press, Beijing, 2014(徐如人, 庞文琴, 霍启升, 于吉红, 陈接胜, 苏宝连, 裘式纶, 闫文付. 分子筛与多孔材料化学(第二版), 北京: 科学出版社, 2014) |
2 | Čejka J., Morris R. E., Nachtigall P., Zeolites in Catalysis: Properties and Applications, the Royal Society of Chemistry, London, 2017 |
3 | Kulprathipanja S., Zeolites in Industrial Separation and Catalysis, WILEY⁃VCH, Weinheim, 2010 |
4 | Shu X. T., Li C. Y., He M. Y., Zeolite Containing Rare Earth Oxide and Its Preparation, ZL 86107531, 1988⁃08⁃03(舒兴田, 李才英, 何鸣元. 含稀土氧化物的分子筛及其制备, ZL 86107531, 1988⁃08⁃03) |
5 | He M. Y., Shu X. T., Tan J. P., Pet. Process. Petrochem., 1993, 24(7), 22—29(何鸣元, 舒兴田, 谭经品. 石油炼制与化工, 1993, 24(7), 22—29) |
6 | Jiang W. B., Long J., Tian H. P., Song H. T., Chen B. Y., He M. Y., Wang Z. B., Fan Y. H., Petroleum Hydrocarbon Cracking Catalyst Containing Rare Earth Superstable Y⁃type Zeolite, ZL 200410029876.5, 2007⁃05⁃23(蒋文斌, 龙军, 田辉平, 宋海涛, 陈蓓艳, 何鸣元, 王振波, 范玉华. 一种含稀土超稳Y型沸石的石油烃裂化催化剂, ZL 200410029876.5, 2007⁃05⁃23) |
7 | Ward J. W., Linda Y., Ammonia⁃stable Y Zeolite Compositions, US 3929672, 1975⁃12⁃30 |
8 | Martínez J. G., Li K. H., Krishnaiah G., Chem. Commun., 2012, 48(97), 11841—11843 |
9 | Martínez J. G., Johnson M., Valla J., Li K. H., Ying J. Y., Catal. Sci. Technol., 2012, 2(5), 987—994 |
10 | Xiao C. P., Ao X. W., Guangzhou Chem. Ind., 2013, 41(10), 47—48(肖翠平, 敖晓文. 广州化工, 2013, 41(10), 47—48) |
11 | Xie Z. K., Novel Structured High⁃performance Porous Catalytic Materials, Sinopec Press, Beijing, 2009(谢在库. 新结构高性能多孔催化材料, 北京: 中国石化出版社, 2009) |
12 | Cui X. M., Techno. Econo. Petrochem., 2019, 35(1), 6—11(崔小明. 石油化工技术与经济, 2019, 35(1), 6—11) |
13 | Dai H. L., Aromatic Hydrocarbon Technology, Sinopec Press, Beijing, 2014(戴厚良. 芳烃技术, 北京: 中国石化出版社, 2014) |
14 | Cheng W. C., Kong D. J., Cao D. A., Yang D. Q., Mao H. Y., Zhang H. Y., Ind. Catal., 1997, 5(1), 51—56(程文才, 孔德金, 曹德安, 杨德琴, 毛海燕, 张惠耀. 工业催化, 1997, 5(1), 51—56) |
15 | Kong D. J., Cheng W. C., Zou W., Li H. Y., Yang D. Q., Ind. Catal., 2002, 10(5), 45—49(孔德金, 程文才, 邹薇, 李华英, 杨德琴. 工业催化, 2002, 10(5), 45—49) |
16 | Kong D. J., Guo H. L., Method of Highly Selective Production of C8 Aromatics from C9 and above Heavy Aromatics, ZL 200610025097.7, 2010⁃12⁃01(孔德金, 郭宏利. 碳九及其以上重质芳烃高选择性生产碳八芳烃的方法, ZL 200610025097.7, 2010⁃12⁃01) |
17 | Abichandani J. S., Venkat C. R., Dual Bed Xylene Isomerization, US 5516956, 1996⁃05⁃14 |
18 | Liu Z. X., Gu H. H., Liang Z. Q., Ruan C., Wang J. W. Gui S. X., a Catalyst for Isomerization of Alkylaromatics and Its Application, ZL 200510080209.4, 2008⁃10⁃15(刘中勋, 顾昊辉, 梁战桥, 阮迟, 王建伟, 桂寿喜. 一种烷基芳烃异构化催化剂及使用方法, ZL 200510080209.4, 2008⁃10⁃15) |
19 | https://www.sohu.com/a/343355473_313493 |
20 | Sun H. M., Techno. Econo. Petrochem., 2019, 35(5), 18—23(孙洪敏. 石油化工技术与经济, 2019, 35(5), 18—23) |
21 | Global Cumene Industry Outlook to 2023, GlobalData, Taipei, 2019 |
22 | Yang W. M., Sun H. M., Tang Y. M., Lu M. X., Zhu H. F., Xue L. X., Alkylation Catalyst of Benzene and Ethylene to Ethylbenzene, ZL 97106449.0, 2002⁃02⁃20(杨为民, 孙洪敏, 唐玉民, 陆敏侠, 朱慧芬, 薛立新. 苯和乙烯制乙苯的烷基化催化剂, ZL 97106449.0, 2002⁃02⁃20) |
23 | Yang W. M., Sun H. M., Tang Y. M., Lu M. X., Zhu H. F., Xue L. X., Alkylation Method of Benzene and Ethylene to Ethylbenzene, ZL 97106448.2, 2000⁃05⁃31(杨为民, 孙洪敏, 唐玉民, 陆敏侠, 朱慧芬, 薛立新. 苯和乙烯制乙苯的烷基化方法, ZL 97106448.2, 2000⁃05⁃31) |
24 | Yang W. M., Sun H. M., Zhang B., Shen Z. H., Huan M. Y., Method for Producing Ethylbenzene by Vapor Phase Alkylation of Ethanol with Benzene, ZL 201010200054.4, 2014⁃03⁃26(杨为民, 孙洪敏, 张斌, 沈震浩, 宦明耀. 乙醇与苯气相烷基化制乙苯的方法, ZL 201010200054.4, 2014⁃03⁃26) |
25 | Yang W. M., Sun H. M., Liu W. J., Zhang B., Shen Z. H., Huan M. Y., Zhang H. Y., Processes for Synthesizing Ethylbenzene from Ethanol and Benzene, US 8519208, 2013⁃08⁃27 |
26 | Wang Q. X., Zhang S. R., Cai G. Y., Li F., Xu L. Y., Huang Z. X., Li Y. Y., An Alkylation Catalyst and Its Application, ZL 96106561.3, 2000⁃01⁃26(王清遐, 张淑蓉, 蔡光宇, 李峰, 徐龙伢, 黄祖贤, 李玉英. 一种烷基化催化剂及其应用, ZL 96106561.3, 2000⁃01⁃26) |
27 | Chen F. C., Zhu X. X., Xie S. J., Zeng P., Guo Z. J., An J., Wang Q. X., Liu S. L., Xu L. Y., Chin. J. Catal., 2009, 30(8), 817—824(陈福存, 朱向学, 谢素娟, 曾蓬, 郭志军, 安杰, 王清遐, 刘盛林, 徐龙伢. 催化学报, 2009, 30(8), 817—824) |
28 | Sun H. M., Yang W. M., Zhang B., Shen Z. H., Huan M. Y., Method for Producing Ethylbenzene by Alkylation of Dry⁃gas with Benzene, ZL 201110193348.3, 2014⁃07⁃03(孙洪敏, 杨为民, 张斌, 沈震浩, 宦明耀. 干气与苯烷基化制乙苯的方法, ZL 201110193348.3, 2014⁃07⁃03) |
29 | Li Y. N., Jin Z. S., Yang W. M., Method of Preferred Orientation Growth of MFI Zeolite, ZL 201110194985.2, 2014⁃07⁃02(李亚男, 金照生, 杨为民. MFI型沸石择优定向生长方法, ZL 201110194985.2, 2014⁃07⁃02) |
30 | Sun H. M., Yang W. M., Zhang B., Huan M. Y., Method for Producing Ethylbenzene by Alkylation of Dry⁃gas or Pure Ethylene with Benzene, ZL 200910057824.1, 2013⁃06⁃05(孙洪敏, 杨为民, 张斌, 宦明耀. 纯乙烯或干气与苯烷基化制乙苯的方法, ZL 200910057824.1, 2013⁃06⁃05) |
31 | Hou F. S., China's Oil Refining Technology(Third Edition), Sinopec Press, Beijing, 2011(侯芙生. 中国炼油技术(第三版), 北京: 中国石化出版社, 2011) |
32 | Mu X. H., Wang D. Z., Wang Y. R., Cheng S. B., Lin M., Shu X. T., Acta Petrol. Sin(Pet. Process. Section), 2008, SI, 1—7(慕旭宏, 王殿中, 王永睿, 程时标, 林民, 舒兴田. 石油学报(石油加工), 2008, 增刊, 1—7) |
33 | Yang W. M., Wang Z. D., Sun H. M., Zhang B., Huan M. Y., Shen Z. H., Xue M. W., Molecular Sieve, Manufacturing Method Therefor, and Uses Thereof, US 10099935, 2018⁃10⁃16 |
34 | Liu J. T., Green Chemical, Metallurgical and Materials Engineering, Chemical Industry Press, Beijing, 2018(刘炯天. 绿色化工、 冶金、 材料工程, 北京: 化学工业出版社, 2018) |
35 | Xin Q., Xu J., Modern Catalytic Chemistry, Science Press, Beijing, 2016(辛勤, 徐杰. 现代催化化学, 北京: 科学出版社, 2016) |
36 | Xie W., Liu Y. M., Wang L. L., Wu P., Chin. J. Catal., 2010, 31(5), 502—513(谢伟, 刘月明, 汪玲玲, 吴鹏. 催化学报, 2010, 31(5), 502—513) |
37 | Duprez D., Cavani F., Handbook of Advances Methods and Processes in Oxidation Catalysis, Imperial College Press, London, 2014 |
38 | Bellussi G., Millini R., Pollesel P., Perego C., New J. Chem., 2016, 5(40), 4061—4077 |
39 | Lin M., Shu X. T., Wang X. Q., Zhu B., a Titanosilicate Zeolite and Its Preparation Method, ZL 99126289.1, 2003⁃12⁃31(林民, 舒兴田, 汪燮卿, 朱斌. 一种钛硅分子筛及其制备方法, ZL 99126289.1, 2003⁃12⁃31) |
40 | Lin M., Li H., Wang W., Long J., Pet. Process. Petrochem., 2013, 44(3), 1—5(林民, 李华, 王伟, 龙军. 石油炼制与化工, 2013, 44(3), 1—5) |
41 | Shi L., Techno. Econo. Petrochem., 2008, 24(6), 42—42(石理, 石油化工技术与经济, 2008, 24(6), 42—42) |
42 | Ed.: Hattori H., Ono Y., translate: Gao Z., Yue Y. H., Hua W. M., Solid Acid Catalysis, Fudan University Press, Shanghai, 2015(Hattori Hideshi, Ono Yoshio(著), 高滋, 乐英红, 华伟明(译). 固体酸催化, 上海: 复旦大学出版社, 2015) |
43 | Xu L. Y., Niu X. L., Xie S. J., Preparation Method of a Intergrowth Zeolites, ZL 200410035034.0, 2008⁃08⁃06(徐龙伢, 牛雄雷, 谢素娟. 一种共结晶分子筛的制备方法, ZL 200410035034.0, 2008⁃08⁃06) |
44 | Xue Y., Tao J., Xu Q., Jiang J. H., Catalyst for Producing Pyridine Bases and Its Preparation Method, ZL 200710021347.4, 2009⁃09⁃16(薛谊, 陶峻, 徐强, 蒋剑华. 用于生产吡啶碱的催化剂及其制备方法, ZL 200710021347.4, 2009⁃09⁃16) |
45 | Tsuneki H., Catal. Surv. Asia, 2010, 14, 116—123 |
46 | Song F., Liu Y. M., Wang L. L., Zhang H. J., He M. Y., Wu P., Appl. Catal. A, 2007, 327(1), 22—31 |
47 | Tian P., Wei Y. X., Ye M., Liu Z. M., ACS Catal., 2015, 5(3), 1922—1938 |
48 | Liu Z. M., Methanol to Olefins, Science Press, Beijing, 2015(刘中民. 甲醇制烯烃, 北京: 科学出版社, 2015) |
49 | http://news.sciencenet.cn/htmlnews/2014/6/296636.shtm |
50 | Liu H. X., Xie Z. K., Guan H. B., Fang J. D., Zhao Y., Zhang H. M., Synthesis Method of High⁃performance SAPO Zeolite, ZL 200810043289.X, 2010⁃09⁃01(刘红星, 谢在库, 管洪波, 方敬东, 赵昱, 张惠明. 高性能SAPO分子筛的合成方法, ZL 200810043289.X, 2010⁃09⁃01) |
51 | Xie Z. K., Qi G. Z., Yang W. M., Zhong S. Q., Method for Improving the Selectivity of Low Olefins in the Conversion of Methanol or Dimethyl Ether, ZL 200710037234.3, 2011⁃05⁃18(谢在库, 齐国祯, 杨为民, 钟思青. 甲醇或二甲醚转化过程中提高低碳烯烃选择性的方法, ZL 200710037234.3, 2011⁃05⁃18) |
52 | Xia H., Ren L. P., Zhao G. L., Teng J. W., Ind. Catal., 2017, 25(10), 58—63(夏华, 任丽萍, 赵国良, 滕加伟. 工业催化, 2017, 25(10), 58—63) |
53 | Xie Z. K., Teng J. W., Jin W. Q., Zhao G. L., Method for Producing Propylene by Catalytic Cracking of C4 Olefins, ZL 200510028787.3, 2008⁃02⁃13(谢在库, 滕加伟, 金文清, 赵国良. C4烯烃催化裂解生产丙烯的方法, ZL 200510028787.3,2008⁃02⁃13) |
54 | Jiao F., Li J. J., Pan X. L., Xiao J. P., Li H. B., Ma H., Wei M. M., Pan Y., Zhou Z. Y., Li M. R., Miao S., Li J., Zhu Y. F., Xiao D., He T., Yang J. H., Qi F., Fu Q., Bao X. H., Science, 2016, 351(6277), 1065—1068 |
55 | Shan W. P., Liu F. D., Yu Y. B., He H., Chin. J. Catal., 2014, 35(8), 1251—1259(单文坡, 刘福东, 余运波, 贺泓. 催化学报, 2014, 35(8), 1251—1259) |
56 | Zhang L., Duan H. C., Tan Z. G., Wu Q. M., Meng X. J., Xiao F. S., Chem. J. Chinese Universities, 2020, 41(1), 19—27(章凌, 段宏昌, 谭争国, 吴勤明, 孟祥举, 肖丰收. 高等学校化学学报, 2020, 41(1), 19—27) |
57 | Liu Z. M., Woo S. I., Catal. Rev.: Sci. Eng., 2006, 48(1), 43—89 |
58 | Shi X. Y., Liu F. D., Xie L. J., Shan W. P., He H., Environ. Sci. Technol., 2013, 47(7), 3293—3298 |
59 | Li C. X., Li J., Liang W. J., Liang Q. M., Chem. J. Chinese Universities, 2019, 40(7), 1447—1455(李春晓, 李坚, 梁文俊, 梁全明. 高等学校化学学报, 2019, 40(7), 1447—1455) |
60 | Lietti L., Forzatti P., Bregani F., Ind. Eng. Chem. Res., 1996, 35(11), 3884—3892 |
61 | Iwamoto M., Hamada H., Catal. Today, 1991, 10(1), 57—71 |
62 | Chen H. Y., Sachtler W. M. H., Catal. Today, 1998, 42(1), 73—83 |
63 | Long R. Q., Yang R. T., J. Am. Chem. Soc., 1999, 121(23), 5595—5596 |
64 | Gao F., Kwak J. H., Szanyi J., Peden C. H. F., Top. Catal., 2013, 56(15), 1441—1459 |
[1] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[2] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[3] | REN Shijie, QIAO Sicong, LIU Chongjing, ZHANG Wenhua, SONG Li. Synchrotron Radiation X-Ray Absorption Spectroscopy Research Progress on Platinum Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220466. |
[4] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[5] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[6] | WANG Ruyue, WEI Hehe, HUANG Kai, WU Hui. Freezing Synthesis for Single Atom Materials [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220428. |
[7] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[8] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[9] | FAN Jianling, TANG Hao, QIN Fengjuan, XU Wenjing, GU Hongfei, PEI Jiajing, CEHN Wenxing. Nitrogen Doped Ultra-thin Carbon Nanosheet Composited Platinum-ruthenium Single Atom Alloy Catalyst for Promoting Electrochemical Hydrogen Evolution Process [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220366. |
[10] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[11] | CHENG Qian, YANG Bolong, WU Wenyi, XIANG Zhonghua. S-doped Fe-N-C as Catalysts for Highly Reactive Oxygen Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220341. |
[12] | YAO Yiting, LYU Jiamin, YU Shen, LIU Zhan, LI Yu, LI Xiaoyun, SU Baolian, CHEN Lihua. Preparation of Hierarchical Microporous-mesoporous Fe2O3/ZSM-5 Hollow Molecular Sieve Catalytic Materials and Their Catalytic Properties for Benzylation [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220090. |
[13] | WEI Chunhong, JIANG Qian, WANG Panpan, JIANG Chengfa, LIU Yuefeng. Atomic Scale Investigation of Pt Atoms/clusters Promoted Co-catalyzed Fischer-Tropsch Synthesis [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220074. |
[14] | ZHANG Xinxin, XU Di, WANG Yanqiu, HONG Xinlin, LIU Guoliang, YANG Hengquan. Effect of Mn Promoter on CuFe-based Catalysts for CO2 Hydrogenation to Higher Alcohols [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220187. |
[15] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||