Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (1): 188.doi: 10.7503/cjcu20200406
Special Issue: 分子筛功能材料 2021年,42卷,第1期
• Review • Previous Articles Next Articles
MA Chao1,2,3, LIU Xiaona1,2, NIE Chenyang1,2, CHEN Lu4, TIAN Peng1, XU Hongyi5(), GUO Peng1(
), LIU Zhongmin1
Received:
2020-06-30
Online:
2021-01-10
Published:
2021-01-12
Contact:
XU Hongyi,GUO Peng
E-mail:Hongyi.xu@mmk.su.se;pguo@dicp.ac.cn
Supported by:
CLC Number:
TrendMD:
MA Chao, LIU Xiaona, NIE Chenyang, CHEN Lu, TIAN Peng, XU Hongyi, GUO Peng, LIU Zhongmin. Applications of X-ray and Electron Crystallography in Structural Investigations of Zeolites[J]. Chem. J. Chinese Universities, 2021, 42(1): 188.
Fig.2 An RSS approach facilitating the targeted synthesis of DNL?6 and SAPO?42(A); in the as?made FER zeolite(blue: Al or Si atom, red: O atom), unprotonated pyridine located in the fer cage(B) and 10?ring channel(C), respectively; Na+ ion is in the 10?ring channel only(D); in the pyridine? adsorbed sample, the protonated pyridine is occluded in the 10?ring channel and forms hydrogen bonding with framework oxygen O2(E)[16]Copyright 2017, Royal Society of Chemistry.
Fig.3 Schematic illustration of RED method(A)[36]; HRTEM images of a thin edge(B) and broken crystal piece(C) of Beta?TEAOH[23]; low magnification TEM image of ZSM?57?Na(D); HRTEM images of the highlighted orange area(E) and isolated fragment from the same sample(F)[27](A) First, 2D electron diffraction pattern was collected at each combined tilt angle. Then, 3D electron diffraction data was reconstructed and processed. Finally, the structure model can be solved. Copyright 2013, Wiley?Blackwell; (B, C) The stacking sequences of 12?ring channels are marked in the images.The inserts are FFT patterns of the thin area of the images. Copyright 2015, Springer Nature; (D, E, F) Copyright 2019, Wiley?VCH.
Fig.4 Schematic illustration of STEM system(A)[42]; HAADF image of site?isolated Pt atoms in KLTL zeolite in the oxidized sample(B)[6]; iDPC images of the surface terminations from the [010] direction in the ZSM?5(C—F); iDPC image of the (010) interfaces between ZSM?5 particles(G); iDPC image of the PX?adsorbed ZSM?5 from the [010] direction(H)[12] and iDPC image of Mo/ZSM?5(I)[14](A) The inner is the segmented detector for iDPC imaging, while the outer is the HAADF detector.Copyright 2020, American Association for the Advancement of Science; (B) White features in dashed blue circles indicate Pt atoms.Copyright 2014, Wiley?VCH; (C―H) Copyright 2019, Wiley?VCH; (I) Copyright 2020, Wiley?VCH.
Code | Material | Structure determination | Code | Material | Structure determination |
---|---|---|---|---|---|
*?SVY | SSZ?70a | Modelling+HRTEM+PXRD | *PCS | IPC?6a | Modelling+PXRD |
CSV | CIT?7a | RED+PXRD | *SFV | SSZ?57a | PXRD |
IFY | ITQ?50a | PXRD | *MRE | ZSM?48a | Modelling+HRTEM+PXRD |
OKO | IPC?2a | Modelling+PXRD | ?SVR | SSZ?74a | PXRD+HRTEM |
PCR | IPC?4a | Modelling+PXRD | *STO | SSZ?31a | Modelling+HRTEM+PXRD |
― | IDM?1a | cRED+PXRD[ | ― | ECNU?36a | 3DEDT+HRTEM+PXRD[ |
― | NUD?5a | SXRD[ | ― | NUD?6a | SXRD[ |
ETV | EMM?37b | cRED | MWF | ZSM?25b | RED+PXRD |
― | PST?20b | RED+PXRD[ | ― | PST?25b | RED+PXRD[ |
― | PST?26b | SAED+PXRD[ | ― | PST?28b | SAED+PXRD[ |
PWN | PST?29b | SXRD+PXRD | *?EWT | EMM?23b | RED+PXRD |
MRT | ZSM?43b | RED+PXRD | *?ITN | ITQ?39b | HRTEM |
PTY | PST?30b | PXRD | *?SSO | SSZ?61b | Modelling+HRTEM+PXRD |
PWO | PST?21b | PXRD | EEI | SSZ?45b | RED+PXRD |
PWW | PST?22b | PXRD | SFW | SSZ?52b | PXRD+HRTEM |
YFI | YNU?5b | PXRD | LTJ | Linde type Jb | PXRD |
ETL | EU?12b | PXRD | LTF | LZ?135b | PXRD |
EWO | ECNU?21c | cRED | ITG | ITQ?38c | Modelling+HRTEM+PXRD |
?SYT | SYSU?3c | cRED | ITT | ITQ?33c | PXRD |
SOV | SCM?15c | RED+PXRD | SVV | SSZ?77c | PXRD |
*UOE | IM?18c | RED+PXRD | ?ITV | ITQ?37c | PXRD |
*CTH | CIT?13c | RED+PXRD | IRR | ITQ?44c | PXRD |
SOR | SCM?14c | RED+PXRD | UWY | IM?20c | PXRD |
?IFT | ITQ?53c | RED+PXRD | ITR | ITQ?34c | PXRD |
?IFU | ITQ?54c | RED+PXRD | UOS | IM?16c | PXRD |
IRN | ITQ?49c | PXRD | IWS | ITQ?26c | SAED+PXRD |
POS | PKU?16c | RED+PXRD | SOF | SU?15c | SXRD |
UOV | IM?17c | RED+PXRD | STW | SU?32c | SXRD |
?IRY | ITQ?40c | SXRD+PXRD | ― | NUD?1c | SXRD[ |
EWS | EMM?26d | RED+PXRD | MVY | MCM?70d | PXRD |
IFW | ITQ?52d | PXRD | SFS | SSZ?56d | PXRD |
SEW | SSZ?82d | PXRD | SSF | SSZ?65d | PXRD |
JSR | GaGeO?JU64e | SXRD | BOF | UCSB?15e | SXRD |
BOZ | Be?10e | SXRD | BSV | UCSB?7e | SXRD |
JST | GaGeO?CJ63e | SXRD | SBN | UCSB?9e | SXRD |
PUN | PKU?9e | SXRD | JOZ | LSJ?10e | SXRD |
AVE | AlPO?78f | PXRD | IFO | ITQ?51f | RED+PXRD |
POR | PST?14f | cRED+PXRD | JSN | CoAPO?CJ69f | SXRD |
SWY | STA?20f | SAED+PXRD | JSW | CoAPO?CJ62f | SXRD |
PSI | PST?6f | RED+PXRD | NPT | Oxonitridophosphate?2f | PXRD |
JNT | JU?92?300f | SXRD | SAF | STA?15f | PXRD |
AFV | ZnAlPO?57f | PXRD | JRY | CoAPO?CJ40f | SXRD |
AVL | ZnAlPO?59f | PXRD |
Table 1 Eighty-five novel zeolites discovered since 2007
Code | Material | Structure determination | Code | Material | Structure determination |
---|---|---|---|---|---|
*?SVY | SSZ?70a | Modelling+HRTEM+PXRD | *PCS | IPC?6a | Modelling+PXRD |
CSV | CIT?7a | RED+PXRD | *SFV | SSZ?57a | PXRD |
IFY | ITQ?50a | PXRD | *MRE | ZSM?48a | Modelling+HRTEM+PXRD |
OKO | IPC?2a | Modelling+PXRD | ?SVR | SSZ?74a | PXRD+HRTEM |
PCR | IPC?4a | Modelling+PXRD | *STO | SSZ?31a | Modelling+HRTEM+PXRD |
― | IDM?1a | cRED+PXRD[ | ― | ECNU?36a | 3DEDT+HRTEM+PXRD[ |
― | NUD?5a | SXRD[ | ― | NUD?6a | SXRD[ |
ETV | EMM?37b | cRED | MWF | ZSM?25b | RED+PXRD |
― | PST?20b | RED+PXRD[ | ― | PST?25b | RED+PXRD[ |
― | PST?26b | SAED+PXRD[ | ― | PST?28b | SAED+PXRD[ |
PWN | PST?29b | SXRD+PXRD | *?EWT | EMM?23b | RED+PXRD |
MRT | ZSM?43b | RED+PXRD | *?ITN | ITQ?39b | HRTEM |
PTY | PST?30b | PXRD | *?SSO | SSZ?61b | Modelling+HRTEM+PXRD |
PWO | PST?21b | PXRD | EEI | SSZ?45b | RED+PXRD |
PWW | PST?22b | PXRD | SFW | SSZ?52b | PXRD+HRTEM |
YFI | YNU?5b | PXRD | LTJ | Linde type Jb | PXRD |
ETL | EU?12b | PXRD | LTF | LZ?135b | PXRD |
EWO | ECNU?21c | cRED | ITG | ITQ?38c | Modelling+HRTEM+PXRD |
?SYT | SYSU?3c | cRED | ITT | ITQ?33c | PXRD |
SOV | SCM?15c | RED+PXRD | SVV | SSZ?77c | PXRD |
*UOE | IM?18c | RED+PXRD | ?ITV | ITQ?37c | PXRD |
*CTH | CIT?13c | RED+PXRD | IRR | ITQ?44c | PXRD |
SOR | SCM?14c | RED+PXRD | UWY | IM?20c | PXRD |
?IFT | ITQ?53c | RED+PXRD | ITR | ITQ?34c | PXRD |
?IFU | ITQ?54c | RED+PXRD | UOS | IM?16c | PXRD |
IRN | ITQ?49c | PXRD | IWS | ITQ?26c | SAED+PXRD |
POS | PKU?16c | RED+PXRD | SOF | SU?15c | SXRD |
UOV | IM?17c | RED+PXRD | STW | SU?32c | SXRD |
?IRY | ITQ?40c | SXRD+PXRD | ― | NUD?1c | SXRD[ |
EWS | EMM?26d | RED+PXRD | MVY | MCM?70d | PXRD |
IFW | ITQ?52d | PXRD | SFS | SSZ?56d | PXRD |
SEW | SSZ?82d | PXRD | SSF | SSZ?65d | PXRD |
JSR | GaGeO?JU64e | SXRD | BOF | UCSB?15e | SXRD |
BOZ | Be?10e | SXRD | BSV | UCSB?7e | SXRD |
JST | GaGeO?CJ63e | SXRD | SBN | UCSB?9e | SXRD |
PUN | PKU?9e | SXRD | JOZ | LSJ?10e | SXRD |
AVE | AlPO?78f | PXRD | IFO | ITQ?51f | RED+PXRD |
POR | PST?14f | cRED+PXRD | JSN | CoAPO?CJ69f | SXRD |
SWY | STA?20f | SAED+PXRD | JSW | CoAPO?CJ62f | SXRD |
PSI | PST?6f | RED+PXRD | NPT | Oxonitridophosphate?2f | PXRD |
JNT | JU?92?300f | SXRD | SAF | STA?15f | PXRD |
AFV | ZnAlPO?57f | PXRD | JRY | CoAPO?CJ40f | SXRD |
AVL | ZnAlPO?59f | PXRD |
Fig.5 CBUs of ITQ?29(d4r, sod, and lta) and ITQ?50(d4r, sti, sod, and ify)(A) and different 8?ring channels of ITQ?50 viewed along [110] and [001] directions(B)Bridging O atoms have been omitted for clarity(blue: Si atom).
Fig.6 Building layer(pst?21 layer) nonjointly comprising bre CBUs(A); PST?21 and PST?22 structures viewed along the c?axis(B); the building layer(bre_L1 layer) nonjointly comprising bre CBUs are stacked PST?30 structure with 8?ring and 10?ring channels viewed along the c? and a?axis(C)Bridging O atoms have been omitted for clarity(blue: Al or Si atom). (B) The building layers in PST?21 and PST?22 are stacked in sequences AAAA… and AAtAAt… along the a?axis, respectively.
Fig.7 Framework representations of cross?sections of RHO?G1 to RHO?G8 in the RHO familyBridging O atoms have been omitted for clarity(blue: Al or Si atom).
Fig.8 Condense layer of EMM?26(A); 3D framework generated by connecting the adjacent layers, which are related by a mirror perpendicular to the a?axis(B) and location of the OSDA in the cavity of EMM?26(C)Oxygen atoms have been omitted for clarity.(A) fer and mor CUBs are highlighted in red and yellow, respectively.
Fig.9 ac?plane of SCM?14(A), 3D framework of SOR(B), ac?plane of SCM?15(C) and 3D framework of SOV(D)Oxygen, germanium and non?framework atoms have been omitted for clarity.
1 | International Zeolite Association’s Structure Commission, http://www.iza⁃structure.org/index.htm |
2 | Guo P., Yan N. N., Wang L., Zou X. D., Cryst. Growth Des., 2017, 17(12), 6821—6835 |
3 | Tian P., Wei Y. X., Ye M., Liu Z. M., ACS Catal., 2015, 5(3), 1922—1938 |
4 | Su X., Tian P., Fan D., Xia Q. H., Yang Y., Xu S. T., Zhang L., Zhang Y., Wang D. H., Liu Z. M., ChemSusChem, 2013, 6(5), 911—918 |
5 | Yan N. N., Wang L., Liu X. N., Wu P. F., Sun T. T., Xu S. T., Han J. F., Guo P., Tian P., Liu Z. M., J. Mater. Chem. A, 2018, 6(47), 24186—24193 |
6 | Kistler J. D., Chotigkrai N., Xu P. H., Enderle B., Praserthdam P., Chen C. Y., Browning N. D., Gates B. C., Angew. Chem. Int. Ed., 2014, 53(34), 8904—8907 |
7 | Gao Z. H., Chen F. J., Xu L., Sun L., Xu Y., Du H. B., Chem. Eur. J., 2016, 22(40), 14367—14372 |
8 | Jo D. H., Park G. T., Shin J. H., Hong S. B., Angew. Chem. Int. Ed., 2018, 57(8), 2199—2203 |
9 | Guo P., Shin J. H., Greenaway A. G., Min J. G., Su J., Choi H. J., Liu L. F., Cox P. A., Hong S. B., Wright P. A., Zou X. D., Nature, 2015, 524(7563), 74—78 |
10 | Guo P., Strohmaier K., Vroman H., Afeworki M., Ravikovitch P. I., Paur C. S., Sun J. L., Burton A., Zou X. D., Inorg. Chem. Front., 2016, 3(11), 1444—1448 |
11 | Zhang C. Q., Kapaca E., Li J. Y., Liu Y. L., Yi X. F., Zheng A. M., Zou X. D., Jiang J. X., Yu J. H., Angew. Chem. Int. Ed., 2018, 57(22), 6486—6490 |
12 | Shen B. Y., Chen X., Cai D. L., Xiong H., Liu X., Meng C. G., Han Y., Wei F., Adv. Mater., 2020, 32(4), 1906103 |
13 | Gramm F., Baerlocher C., McCusker L. B., Warrender S. J., Wright P. A., Han B., Hong S. B., Liu Z., Ohsuna T., Terasaki O., Nature, 2006, 444(7115), 79—81 |
14 | Liu L. M., Wang N., Zhu C. Z., Liu X. N., Zhu Y. H., Guo P., Alfilfil L., Dong X. L., Zhang D. L., Han Y., Angew. Chem. Int. Ed., 2020, 59(2), 819—825 |
15 | Bae J., Cho J., Lee J. H., Seo S. M., Hong S. B., Angew. Chem. Int. Ed., 2016, 55(26), 7369—7373 |
16 | Wang L., Xu H. Y., Yan N. N., Correll S., Xu S. T., Guo P., Tian P., Liu Z. M., CrystEngComm, 2018, 20(6), 699—702 |
17 | Lee H., Shin J. H., Choi W., Choi H. J., Yang T. M., Zou X. D., Hong S. B., Chem. Mater., 2018, 30(19), 6619—6623 |
18 | Kapaca E., Burton A., Terefenko E., Vroman H., Weston S. C., Kochersperger M., Afeworki M., Paur C., Koziol L., Ravikovitch P., Xu H. Y., Zou X. D., Willhammar T., Inorg. Chem., 2019, 58(19), 12854—12858 |
19 | Willhammar T., Sun J. L., Wan W., Oleynikov P., Zhang D. L., Zou X. D., Moliner M., Gonzalez J., Martínez C., Rey F., Corma A., Nature Chem., 2012, 4(3), 188—194 |
20 | Luo Y., Smeets S., Peng F., Etman A. S., Wang Z. D., Sun J. L., Yang W. M., Chem. Eur. J., 2017, 23(66), 16829—16834 |
21 | Luo Y., Smeets S., Wang Z. D., Sun J. L., Yang W. M., Chem. Eur. J., 2019, 25(9), 2184—2188 |
22 | Jordá J. L., Rey F., Sastre G., Valencia S., Palomino M., Corma A., Segura A., Errandonea D., Lacomba R., Manjón F. J., Gomis Ó., Kleppe A. K., Jephcoat A. P., Amboage M., Rodríguez⁃Velamazán J. A., Angew. Chem. Int. Ed., 2013, 52(40), 10458—10462 |
23 | Tong M. Q., Zhang D. L., Fan W. B., Xu J., Zhu L. K., Guo W., Yan W. F., Yu J. H., Qiu S. L., Wang J. G., Deng F., Xu R. R., Sci. Rep., 2015, 5(1), 11521 |
24 | Jo D. H., Hong S. B., Angew. Chem. Int. Ed., 2019, 58(39), 13845—13848 |
25 | Shin J. H., Xu H. Y., Seo S., Guo P., Min J. G., Cho J., Wright P. A., Zou X. D., Hong S. B., Angew. Chem. Int. Ed., 2016, 55(16), 4928—4932 |
26 | Sun J. L., Bonneau C., Cantín Á., Corma A., Díaz⁃Cabañas M. J., Moliner M., Zhang D. L., Li M. R., Zou X. D., Nature, 2009, 458(7242), 1154—1157 |
27 | Wang L., Yan N. N., Liu X. N., Zhao X. B., Shen M. K., Liu L. F., Tian P., Guo P., Liu Z. M., Chem. Eur. J., 2019, 25(4), 1029—1036 |
28 | Yan N. N., Ma C., Cao Y., Liu X. N., Cao L., Guo P., Tian P., Liu Z. M., Small, 2020, 16(33), 2000902 |
29 | Bunaciu A. A., Udriştioiu E. G., Aboul⁃Enein H. Y., Crit. Rev. Anal. Chem., 2015, 45(4), 289—299 |
30 | Oszlányi G., Sütő A., Acta Cryst., 2004, 60(2), 134—141 |
31 | Patterson A. L., Phys. Rev., 1934, 46(5), 372—376 |
32 | STOE, https://www.stoe.com/product/stoe⁃stadi⁃p/ |
33 | Su X., Tian P., Li J. Z., Zhang Y., Meng S. H., He Y. L., Fan D., Liu Z. M., Micropor. Mesopor. Mater., 2011, 144(1—3), 113—119 |
34 | The Nobel Prize in Physics, https://www.nobelprize.org/prizes/physics/ |
35 | Zhang D. L., Oleynikov P., Hovmöller S., Zou X. D., Z. Kristallogr., 2010, 225(2/3), 94—102 |
36 | Wan W., Sun J. L., Su J., Hovmöller S., Zou X. D., J. Appl. Cryst., 2013, 46(6), 1863—1873 |
37 | Kolb U., Gorelik T., Kübel C., Otten M. T., Hubert D., Ultramicroscopy, 2007, 107(6/7), 507—513 |
38 | Kolb U., Gorelik T., Otten M. T., Ultramicroscopy, 2008, 108(8), 763—772 |
39 | Gemmi M., La Placa M. G. I., Galanis A. S., Rauch E. F., Nicolopoulos S., J. Appl. Cryst., 2015, 48(3), 718—727 |
40 | Wang B., Rhauderwiek T., Inge A. K., Xu H. Y., Yang T. M., Huang Z. H., Stock N., Zou X. D., Chem. Eur. J., 2018, 24(66), 17429—17433 |
41 | Xu H. Y., Lebrette H., Clabbers M. T. B., Zhao J. J., Griese J. J., Zou X. D., Högbom M., Sci. Adv., 2019, 5(8), eaax4621 |
42 | De Graaf S., Momand J., Mitterbauer C., Lazar S., Kooi B. J., Sci. Adv., 2020, 6(5), eaay4312 |
43 | Lazić I., Bosch E. G. T., Lazar S., Ultramicroscopy, 2016, 160, 265—280 |
44 | Villaescusa L. A., Li J., Gao Z. H., Sun J. L., Camblor M. A., Angew. Chem. Int. Ed., 2020, 59(28), 11283—11286 |
45 | Jiao M. C., Huang J., Xu H., Jiang J. G., Guan Y. J., Ma Y. H., Wu P., Angew. Chem. Int. Ed., 2020, 59(39), 17291—17296 |
46 | Zi W. W., Gao Z. H., Zhang J., Lv J. H., Zhao B. X., Jiang Y. F., Du H. B., Chen F. J., Micropor. Mesopor. Mater., 2019, 290, 109654 |
47 | Zi W. W., Gao Z. H., Zhang J., Zhao B. X., Cai X. S., Du H. B., Chen F. J., Angew. Chem. Int. Ed., 2020, 59(10), 3948—3951 |
48 | Chen F. J., Xu Y., Du H. B., Angew. Chem. Int. Ed., 2014, 53(36), 9592—9596 |
[1] | YAO Yiting, LYU Jiamin, YU Shen, LIU Zhan, LI Yu, LI Xiaoyun, SU Baolian, CHEN Lihua. Preparation of Hierarchical Microporous-mesoporous Fe2O3/ZSM-5 Hollow Molecular Sieve Catalytic Materials and Their Catalytic Properties for Benzylation [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220090. |
[2] | CHEN Weiqin, LYU Jiamin, YU Shen, LIU Zhan, LI Xiaoyun, CHEN Lihua, SU Baolian. Preparation of Organic Hybrid Mesoporous Beta Zeolite for Alkylation of Mesitylene with Benzyl Alcohol [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220086. |
[3] | LI Zhiguang, QI Guodong, XU Jun, DENG Feng. Role of Catalyst Acidity in Glucose Conversion over Sn-Al-β Zeolite as Studied by Solid-state NMR [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220138. |
[4] | LI Jiafu, ZHANG Kai, WANG Ning, SUN Qiming. Research Progress of Zeolite-encaged Single-atom Metal Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220032. |
[5] | MENG Xianglong, YANG Ge, GUO Hailing, LIU Chenguang, CHAI Yongming, WANG Chunzheng, GUO Yongmei. Synthesis of Nano-zeolite and Its Adsorption Performance for Hydrogen Sulfide [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210687. |
[6] | WEI Lina, PENG Li, ZHU Feng, GU Pengfei, GU Xuehong. Preparation of Au-CeZr/FAU Catalytic Membranes for Preferential Oxidation of CO in H2-rich Stream [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220175. |
[7] | LUO Qiangqiang, JIN Shaoqing, SUN Hongmin, YANG Weimin. Post-synthesis of Ti-MWW Zeolite via Titanium Incorporation in Liquid Acid Solution [J]. Chem. J. Chinese Universities, 2021, 42(9): 2742. |
[8] | LI Yichuan, ZHU Guofu, WANG Yu, CHAI Yongming, LIU Chenguang, HE Shengbao. Effects of Substrate Surface Properties and Precursor Chemical Environment on In⁃situ Oriented Construction of Titanium Silicalite Zeolite Membranes [J]. Chem. J. Chinese Universities, 2021, 42(9): 2934. |
[9] | ZHANG Xu, QUE Jiaqian, HOU Yuexin, LYU Jiamin, LIU Zhan, LEI Kunhao, YU Shen, LI Xiaoyun, CHEN Lihua, SU Baolian. Hierarchical Mesoporous-microporous TS-1 Single Crystal Catalysts for Epoxidation of Allyl Chloride [J]. Chem. J. Chinese Universities, 2021, 42(8): 2529. |
[10] | WANG Lei, SUN Tantan, YAN Nana, MA Chao, LIU Xiaona, TIAN Peng, GUO Peng, LIU Zhongmin. Exploring Organic Structure-directing Agents Used for SAPO-34 to Synthesize SSZ-13 [J]. Chem. J. Chinese Universities, 2021, 42(6): 1716. |
[11] | LI Jian, YU Mingming, SUN Yuan, FENG Wenhua, FENG Zhaochi, WU Jianfeng. Effect of Aqueous Solution pH on the Oxidation of Methane to Methanol at Low Temperature [J]. Chem. J. Chinese Universities, 2021, 42(3): 776. |
[12] | WANG Juan, WANG Linying, ZHU Dali, CUI Wenhao, WANG Yifeng, TIAN Peng, LIU Zhongmin. Progress in Direct Synthesis of High Silica Zeolite Y [J]. Chem. J. Chinese Universities, 2021, 42(1): 1. |
[13] | WEN Jiali, ZHANG Junhao, JIANG Jiuxing. Extra-large Pore Zeolites: a Ten-year Updated Review [J]. Chem. J. Chinese Universities, 2021, 42(1): 101. |
[14] | WANG Jianyu, ZHANG Qiang, YAN Wenfu, YU Jihong. Roles of Hydroxyl Radicals in Zeolite Synthesis [J]. Chem. J. Chinese Universities, 2021, 42(1): 11. |
[15] | LIU Yi, LIU Yi. Research Progress on Zeolite Layer Preparation via Oriented Seeded Growth [J]. Chem. J. Chinese Universities, 2021, 42(1): 117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||