 
	 
	Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (2): 633.doi: 10.7503/cjcu20200711
• Article • Previous Articles Next Articles
					
													LIU Zhigang1, LI Jiabao1, YANG Jian1, MA Hao1, WANG Chengyin1( ), GUO Xin2(
), GUO Xin2( ), WANG Guoxiu2(
), WANG Guoxiu2( )
)
												  
						
						
						
					
				
Received:2020-09-24
															
							
															
							
															
							
																											Online:2021-02-10
																								
							
																	Published:2020-12-28
															
						Contact:
								WANG Chengyin,GUO Xin,WANG Guoxiu   
																	E-mail:wangcy@yzu.edu.cn;xin.guo@uts.edu.au;Guoxiu.Wang@uts.edu.cn
																					Supported by:CLC Number:
TrendMD:
LIU Zhigang, LI Jiabao, YANG Jian, MA Hao, WANG Chengyin, GUO Xin, WANG Guoxiu. Preparation of a Novel g-C3N4/Sn/N-doped Carbon Composite for Sodium Storage[J]. Chem. J. Chinese Universities, 2021, 42(2): 633.
 
																													Fig.1 Physical characterization of g?C3N4/Sn/NC(A) XRD patterns of g-C3N4, g-C3N4/SnO2 and g-C3N4/Sn/NC; (B) XPS spectrum of g-C3N4/Sn/NC; (C) Raman spectrum of g-C3N4/Sn/NC; (D) TG curve of g-C3N4/Sn/NC.
 
																													Fig.2 XPS spectra of g?C3N4/Sn/NC and g?C3N4(A—C) High-resolution Sn3d(A), C1s(B) and N1s(C) spectra of g-C3N4/Sn/NC; (D) high-resolution N1s spectra of g-C3N4.
 
																													Fig.3 TEM images of g?C3N4/Sn/NC, g?C3N4/Sn and g?C3N4(A, B) TEM images of g-C3N4; (C, D) TEM images of g-C3N4/SnO2; (E—G) HRTEM images of g-C3N4/Sn/NC; (H, I) SEAD pattern(H) and elemental mapping(I) of g-C3N4/Sn/NC.
 
																													Fig.4 Electrochemical performances of g?C3N4/Sn/NC at 0.5 A/g(A) Discharge/charge profiles of g-C3N4/Sn/NC at 0.5 A/g;(B) cycling performances of g-C3N4/Sn/NC and Sn at 0.5 A/g; (C) coulombic efficiency of g-C3N4/Sn/NC and pure Sn electrodes at 0.5 A/g.
 
																													Fig.5 CV curves of g?C3N4/Sn/NC at the scan rate of 0.1 mV/s in the voltage range of 0.001—1.5 V(A) and comparison of electrochemical properties of g?C3N4/Sn/NC and others(B, C)(B) Nyquist plots of g-C3N4/Sn/NC and Sn after 50 cycles at 0.5 A /g(the inset is the equivalent circuit model); (C) long-term cycling performance of g-C3N4/Sn/NC, g-C3N4/Sn and Sn at 1.0 A /g.
 
																													Fig.6 Rate performance and profiles of g?C3N4/Sn/NC and pure Sn electrodes(A) Rate performance of g-C3N4/Sn/NC and Sn; (B) rate profiles of Sn; (C) rate profiles of g-C3N4/Sn/NC.
| 1 | Wang Z., Liu S., Hou Q., Zhang L., Zhang A., Li F., Zhang X., Wu P., Zhu X., Wei S., Zhou Y., J. Alloys Compd., 2020, 840, 155703 | 
| 2 | Li J., Yan D., Lu T., Yao Y., Pan L.,Chem. Eng. J.,2017, 325, 14—24 | 
| 3 | Du Y., Ma W., Li H., Small,2020, 16(11), e1907468 | 
| 4 | Yang Z., Zhang J., Kintner⁃Meyer. M. C., Lu X., Choi. D., Lemmon. J. P., Liu. J., Chem. Rev., 2011, 111(5), 3577 | 
| 5 | Li S., Zhao Z., Li C., Liu Z., Li D., Nano⁃Micro Lett., 2019, 11(1), 14 | 
| 6 | Ma D., Li Y., Mi H., Luo S., Zhang P., Lin Z., Li J., Zhang H., Angew. Chem. Int. Ed. Engl.,2018, 57(29), 8901—8905 | 
| 7 | Mao M., Yan F., Cui C., Ma J., Zhang M., Wang T., Wang. C., Nano Lett., 2017, 17(6), 3830—3836 | 
| 8 | Jiang Y., Wang Y., Jiang J., Liu S., Li W., Huang S., Chen Z., Zhao B., Electrochim. Acta,2019, 312, 263—271 | 
| 9 | Yue L., Jayapal M., Cheng X., Zhang T., Chen J., Ma X., Dai X., Lu H., Guan R., Zhang.W., Appl. Surf. Sci.,2020, 512, 145686 | 
| 10 | Luo X., Huang J., Li J., Cao L., Cheng Y.,Guo L., Wang Y., Qi H., Appl. Surf. Sci.,2019, 491, 95—104 | 
| 11 | Wang Z., Dong K., Wang D., Chen F., Luo S., Liu Y., He C., Shi C., Zhao N., Chem. Eng. J., 2019, 371, 356—365 | 
| 12 | Li Y., Ou C., Zhu J., Liu Z., Yu J., Li W., Zhang H., Zhang Q., Gu Z., Nano Lett., 2020, 20(3), 2034—2046 | 
| 13 | Cheng D., Yang L., Hu R., Liu J., Che R., Cui J., Wu Y., Chen W., Huang J., Zhu M., Zhao. Y. J., ACS Appl. Mater & Interfaces.,2019, 11(40), 36685—36696 | 
| 14 | Li L., Zhao J., Zhu Y., Pan X., Wang H., Xu J., Electrochim. Acta, 2020, 353, 136532 | 
| 15 | Song X., Li X., Chen Z., Wang Z., Materials Lett., 2020, 275, 128109 | 
| 16 | Zhang S., Mi J., Zhao H., Ma W., Dang L., Yue L., J. Alloys Compd.,2020, 842, 155642 | 
| 17 | Li J., Yan D., Hou S., Lu T., Yao.Y., Pan L., Chem. Eng. J., 2018, 354, 172—181 | 
| 18 | Li J., Li J., Ding Z., Zhang X., Li Y., Lu T., Yao Y., Mai W., Pan L., Chem. Eng. J., 2019, 378, 122108 | 
| 19 | Li G., Lian Z., Wang W., Zhang D., Li H., Nano Energy, 2016, 19, 446—454 | 
| 20 | Yuan M., Teng Z., Wang S., Xu Y., Wu P., Zhu Y., Wang C., Wang G., Chem. Eng. J.,2020, 391, 123506 | 
| 21 | Hankel. M., Ye D., Wang L., Searles D. J., J. Phys. Chem. C,2015, 119(38), 21921—21927 | 
| 22 | Hou Y., Li J., Wen Z., Cui S., Yuan C., Chen J., Nano Energy, 2014, 8, 157 | 
| 23 | Shi M., Wu T., Song X., Liu J., Zhao L., Zhang P., Gao L., J. Mater. Chem. A., 2016, 4(27), 10666—10672 | 
| 24 | Weng G. M., Xie Y., Wang H., Karpovich C., Lipton J., Zhu J., Kong J., Pfefferle L. D., Taylor A. D., Angew. Chem. Int. Ed. Engl., 2019, 58(39), 13727—13733 | 
| 25 | Niu P., Zhang L., Liu G., Cheng. H. M., Adv. Funct. Mater.,2012, 22(22), 4763—4770 | 
| 26 | Zang Y., Li L., Li X., Lin R., Li G., Chem. Eng. J.,2014, 246, 277—286 | 
| 27 | He Y., Zhang L., Fan M., Wang X., Walbridge. M. L., Nong Q., Wu Y., Zhao L., Sol. Energy Mater. Sol. Cells.,2015, 137, 175—184 | 
| 28 | Chen X., Zhou B., Yang S., Wu H., Wu Y., Wu L., Pan J., Xiong X., RSC Adv.,2015, 5(84), 68953—68963 | 
| 29 | Xie X., Kretschmer K., Zhang J., Sun B., Su D., Wang G., Nano Energy, 2015, 13, 208—217 | 
| 30 | Wu X., Qian C., Wu H., Xu L., Bu L., Piao Y.,Diao G., Che M., Chem. Commun.,2020, 56(55), 7629—7632 | 
| 31 | Wang Y., Tao L., Chen R., Li H., Su H., Zhang N., Liu Q., Wang S., Chem. Res. Chinese Universities, 2020, 36(3), 453—458 | 
| 32 | Ye X., Lin Z., Liang S., Huang X., Qiu X., Qiu Y., Liu X., Xie D., Deng H., Xiong. X., Lin Z., Nano Lett., 2019, 19(3), 1860—1866 | 
| 33 | Tang H., Xiang M., Xu B., Li Y., Han W., Liu Z., Chem. Res. Chinese Universities,2018, 34(6), 1004—1008 | 
| 34 | Luo L., Song J., Song L., Zhang H., Bi Y., Liu L., Yin L., Wang F., Wang G., Nano⁃Micro Lett., 2019, 11(1), 63 | 
| 35 | Chen S., Ao Z., Sun B., Xie X., Wang G., Energy Storage Mater., 2016, 5, 180—190 | 
| 36 | Liu M., Huang J., Li J., Cao L., Zhao Y., Ma M., Koji K., J. Alloys Compd., 2020, 834, 155177 | 
| [1] | GONG Yanxi, WANG Jianbing, CHAI Buyu, HAN Yuanchun, MA Yunfei, JIA Chaomin. Preparation of Potassium Doped g-C3N4 Thin Film Photoanode and Its Application in Photoelectrocatalytic Oxidation of Diclofenac Sodium in Water [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220005. | 
| [2] | HOU Congcong, WANG Huiying, LI Tingting, ZHANG Zhiming, CHANG Chunrui, AN Libao. Preparation and Electrochemical Properties of N-CNTs/NiCo-LDH Composite [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220351. | 
| [3] | XU Xiaolong, FANG Lining, LIU Changyu, LIU Minchao, JIA Jianbo. Preparation of Z-type g-C3N4/Pt/TiO2 Nanotube Array Composite Electrode and Its Performance of Photoelectric Oxidation of Methanol [J]. Chem. J. Chinese Universities, 2021, 42(9): 2926. | 
| [4] | TIAN Runsai, LU Qian, ZHANG Hongbin, ZHANG Bo, FENG Yuanyuan, WEI Jinxiang, FENG Jijun. Design and Construction of N-Doping Carbon in⁃situ Coated Cu2O/Co3O4@C Heterostructured Composite Material for Highly Efficient Lithium-ion Storage [J]. Chem. J. Chinese Universities, 2021, 42(8): 2592. | 
| [5] | LI Dongping, LI Bin, LI Changheng, YU Xuegang, SHAN Yan, CHEN Kezheng. Synthesis and Enhanced Photocatalytic Activity of Ni5P4/g-C3N4 [J]. Chem. J. Chinese Universities, 2021, 42(4): 1292. | 
| [6] | GUI Chen, WANG Haolin, SHAO Baixuan, YANG Yujing, XU Guangqing. Molten-salt-assistance Synthesis and Photocatalytic Hydrogen Evolution Performances of g-C3N4 Nanostructures [J]. Chem. J. Chinese Universities, 2021, 42(3): 827. | 
| [7] | WANG Yishu, LI Xue, YAN Li, XU Hongyun, ZHU Yuxin, SONG Yanhua, CUI Yanjuan. Photocatalytic Reduction Performance of Z-scheme Two-dimensional BCN/Sn3O4 Composite Materials [J]. Chem. J. Chinese Universities, 2021, 42(12): 3722. | 
| [8] | SUN Yaguang, ZHANG Hanyan, MING Tao, XU Baotong, GAO Yu, DING Fu, XU Zhenhe. Synthesis of ZnIn2S4/g-C3N4 Nanocomposites with Efficient Photocatalytic H2 Generation Activity by a Simple Hydrothermal Method [J]. Chem. J. Chinese Universities, 2021, 42(10): 3160. | 
| [9] | ZHU Yuxin, OUYANG Jie, SONG Yanhua, TANG Sheng, CUI Yanjuan. Preparation of Boron and Iodine co-Doped Carbon Nitride and Its Performance in Photocatalytic Hydrogen Evolution from Water† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1645. | 
| [10] | XIONG Junyu, WANG Shanshan, XU Yanqing, HU Changwen. Selective Oxidation of Atomically Dispersed Fe-N-C Catalyst Under Mild Conditions  [J]. Chem. J. Chinese Universities, 2020, 41(6): 1262. | 
| [11] | MA Xiangying, LIAO Yanjun, QIN Fanghong, YIN Yuanhao, HUANG Zaiyin, CHEN Qifeng. Study on the Photocatalytic Performance of Carbon Doped g-C3N4 Based on in situ Photomicrocalorimeter-fluorescence Spectrometry [J]. Chem. J. Chinese Universities, 2020, 41(11): 2526. | 
| [12] | WU Zhiqiang, LIU Wanyi, WANG Gang, CAI Wei, YUE Xiaofei, ZHAN Haijuan, BI Shuxian, MENG Zhe, MA Baojun. Preparation of Protonated g-C3N4/β-SiC Composites and Photocatalytic Degradation of Alizarin Red S  [J]. Chem. J. Chinese Universities, 2019, 40(10): 2178. | 
| [13] | ZHANG Jing,DONG Yuming,LIU Xiang,LI Hexing. Synthesis and Photocatalytic Activity of Z-Scheme Photocatalyst Sb2WO6/g-C3N4 † [J]. Chem. J. Chinese Universities, 2019, 40(1): 123. | 
| [14] | LIU Chong, LIU Lilai, NIE Jiahui. Synthesis of Carbon Ball Modified g-C3N4 for Improved Photocatalytic Activity† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1511. | 
| [15] | WANG Hui, PEI Yanbo, HU Shaozheng, MA Wentao, SHI Shuoyu. Synthesis and “Two Channel Pathway” Photocatalytic H2O2 Production Ability of Band Gap Tunable K+ Doped Graphitic Carbon Nitride† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1503. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||