Chem. J. Chinese Universities ›› 2017, Vol. 38 ›› Issue (5): 713.doi: 10.7503/cjcu20170035
• Articles: Inorganic Chemistry • Previous Articles Next Articles
XU Xiaomu1, ZHANG Xingshuai1, CHEN Zhining1, WANG Jing1, GUO Yuzhong1,*(), HUANG Ruian2,*(
), WANG Jianhua1
Received:
2017-01-16
Online:
2017-05-10
Published:
2017-04-25
Contact:
GUO Yuzhong,HUANG Ruian
E-mail:yzguocn62@sina.com;rahuang2002@163.com
Supported by:
CLC Number:
TrendMD:
XU Xiaomu, ZHANG Xingshuai, CHEN Zhining, WANG Jing, GUO Yuzhong, HUANG Ruian, WANG Jianhua. Preparation of a Disordered Mesoporous Silicon Nanocomposite and Its Slow Activation Behavior†[J]. Chem. J. Chinese Universities, 2017, 38(5): 713.
Fig.2 TEM images of raw WCB(A), as-reduced(B), HCl-etched(C), HCl+HF-etched(D), HCl+HF-MP-Si@SiOx(E), HCl+HF-MP-Si@SiOx@C(F) and HRTEM images of HCl+HF-etched(G) and HCl+HF-MP-Si@SiOx@C(H)
Sample | WCB | As-reduced | HCl-etched | HCl+HF-etched |
---|---|---|---|---|
Tap density/(g·cm-3) | 0.05 | 0.12 | 0.25 | 0.24 |
Table 1 Tap density of samples via magnesiothermic reduction and ensuing acid etching treatments
Sample | WCB | As-reduced | HCl-etched | HCl+HF-etched |
---|---|---|---|---|
Tap density/(g·cm-3) | 0.05 | 0.12 | 0.25 | 0.24 |
Fig.4 N2 adsorption-desorption isotherms(A, B), pore size distribution curves(C, D), total specific surface area(E) and micropore surface area(F) of samples via magnesiothermic reduction and ensuing post-treatmentsa. WCB; b. as-reduced; c. HCl-etched; d. HCl+HF-etched; e. Si-HCl+HF/SiOx.
Fig.6 Cyclic capacity curves of samples under different post-treatments(A) With and without SiOx-encapsulating; (B) HCl-etched vs. HCl+HF-etched at 70 mA/g; (C) cycling of HCl+HF-MP-Si@SiOx@C at 70, 200, 500 mA/g current rates; (D) HCl+HF-MP-Si@SiOx@C at 0.1, 0.2, 0.5, 1.0, 2.0 A/g current rates.
[1] | Yin H., Zhou D., Cong L. N., Xie H. M., Qiu Y. Q., Chem. J. Chinese Universities, 2015, 36(10), 1990—1994 |
(尹红, 周丹, 丛丽娜, 谢海明, 仇永清.高等学校化学学报, 2015,36(10), 1990—1994) | |
[2] | Song M. K., Park S., Alamgir F. M., Cho J., Liu M., Mater. Sci. Eng. R, 2011, 72(11), 203—252 |
[3] | Szczech J. R., Jin S., Energy Environ. Sci., 2011, 4(1), 56—72 |
[4] | Liang J., Li X., Hou Z., Zhang W., Zhu Y., Qian Y., ACS Nano, 2016, 10(2), 2295—2304 |
[5] | Wang C. G., Pan X., Zhang L., Zhu M. K., Li D. K., Diao L. B., Li W. Y., Chem. J. Chinese Universities, 2015, 36(2), 368—374 |
(王存国, 潘璇, 张雷, 朱孟康, 李德凯, 刁玲博, 李伟彦.高等学校化学学报, 2015,36(2), 368—374) | |
[6] | Mcdowell M. T., Lee S. W., Nix W. D., Cui Y., Adv. Mater., 2013, 25(36), 4966—4985 |
[7] | Su X., Wu Q., Li J., Xiao X., Lott A., Lu W., Sheldon B. W., Wu J., Adv. Energy Mater., 2014, 4(1), 1—23 |
[8] | Mcdowell M. T., Cui Y., Adv. Energy Mater., 2011, 1(5), 894—900 |
[9] | Lee S. W., Mcdowell M. T., Choi J. W., Cui Y., Nano Lett., 2011, 11(7), 3034—3039 |
[10] | Obrovac M. N., Chevrier V. L., Chem. Rev., 2014, 114(23), 11444—11502 |
[11] | Ng S. H., Wang J., Wexler D., Konstantinov K., Guo Z. P., Liu H. K., Angew. Chem. Int. Ed., 2006, 45(41), 6896—6899 |
[12] | Ma H., Cheng F., Chen J., Zhao J., Li C., Tao Z., Liang J., Adv. Mater., 2007, 19(22), 4067—4070 |
[13] | Kim H., Seo M., Park M. H., Cho J., Angew. Chem. Int. Ed., 2010, 49(12), 2146—2149 |
[14] | Cui L. F., Ruffo R., Chan C. K., Peng H., Cui Y., Nano Lett., 2009, 9(1), 491—495 |
[15] | Pereira-Nabais C., wiatowska J., Chagnes A., Gohier A., Zanna S., Seyeux A., Tran-Van P., Cojocaru C. S., Cassir M., Marcus P., J. Phys. Chem. C, 2014,118(6), 2919—2928 |
[16] | Zhou Y., Jiang X., Chen L., Yue J., Xu H., Yang J., Qian Y., Electrochimica Acta, 2014, 127(1), 252—258 |
[17] | Yoo J. K., Kim J., Jung Y. S., Kang K., Adv. Mater., 2012, 24(40), 5452—5456 |
[18] | Yao Y., Mcdowell M. T., Ryu I., Wu H., Liu N., Hu L., Nix W. D., Cui Y., Nano Lett., 2011, 11(7), 2949—2954 |
[19] | Liang J., Li X., Cheng Q., Hou Z., Fan L., Zhu Y., Qian Y., Nanoscale, 2015, 7(8), 3440—3444 |
[20] | Yu Y., Gu L., Zhu C., Tsukimoto S., Aken P. A., Maier J., Adv. Mater., 2010, 22(10), 2247—2250 |
[21] | Homma K., Kambara M., Yoshida T., Sci. Technol. Adv. Mater., 2014, 15(2), 958—962 |
[22] | Park E., Yoo H., Lee J., Park M. S., Kim Y. J., Kim H., ACS Nano, 2015, 9(7), 7690—7696 |
[23] | Lin N., Zhou J., Wang L., Zhu Y., Qian Y., ACS Appl. Mater. Interfaces, 2015, 7(1), 409—414 |
[24] | Kim H., Han B., Choo J., Cho J., Angew. Chem. Int. Ed., 2008, 47(52), 10151—10154 |
[25] | Bang B. M., Lee J. I., Kim H., Cho J., Park S., Adv. Energy Mater., 2012, 2(7), 878—883 |
[26] | Bao Z., Weatherspoon M. R., Shian S., Cai Y., Graham P. D., Allan S. M., Ahmad G., Dickerson M. B., Church B. C., Kang Z., Abernathy III H. W., Summers C. J., Liu M., Sandhage K. H., Nature, 2007, 446, 172—175 |
[27] | Jia H., Gao P., Yang J., Wang J., Nuli Y., Yang Z., Adv. Energy Mater., 2011, 1(6), 1036—1039 |
[28] | Tao H. C., Fan L. Z., Qu X., Electrochim. Acta, 2012, 71(3), 194—200 |
[29] | Tang Y. P., Yuan S., Guo Y. Z., Huang R. A., Wang J. H., Yang B., Electrochim. Acta, 2016, 200, 182—188 |
[30] | Shi Y., Zhang F., Hu Y. S., Sun X., Zhang Y., Lee H. I., Chen L., Stucky G. D., J. Am. Chem. Soc., 2010, 132(16), 5552—5553 |
[31] | Xie Z., Henderson E. J., Dag Ö., Wang W., Lofgreen J. E., Kuebel C., Scherer T., Brodersen P. M., Gu Z. Z., Ozin G. A., J. Am. Chem. Soc., 2011, 133(30), 5094—5102 |
[32] | Zhong H., Zhan H., Zhou Y. H., J. Power Sources, 2014, 262(4), 10—14 |
[33] | Jun S., Joo S. H., Ryoo R., Kruk M., Jaroniec M., Liu Z., Ohsuna T., Terasaki O., J. Am. Chem. Soc., 2000, 122(43), 10712—10713 |
[34] | Xie J., Wang G., Huo Y., Zhang S., Cao G., Zhao X., Electrochim. Acta, 2014, 135(22), 94—100 |
[1] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[2] | WU Zhuoyan, LI Zhi, ZHAO Xudong, WANG Qian, CHEN Shunpeng, CHANG Xinghua, LIU Zhiliang. A Highly Efficient One-step Preparation Method of Nano-silicon and Carbon Composite for High-performance Lithium Ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2500. |
[3] | TIAN Runsai, LU Qian, ZHANG Hongbin, ZHANG Bo, FENG Yuanyuan, WEI Jinxiang, FENG Jijun. Design and Construction of N-Doping Carbon in⁃situ Coated Cu2O/Co3O4@C Heterostructured Composite Material for Highly Efficient Lithium-ion Storage [J]. Chem. J. Chinese Universities, 2021, 42(8): 2592. |
[4] | HAN Muyao, ZHAO Lina, SUN Jie. Advances in Silicon and Silicon-based Anode Materials [J]. Chem. J. Chinese Universities, 2021, 42(12): 3547. |
[5] | YE Yihua, BA Deliang, LIU Shuailei, CHEN Yinglin, LI Yuanyuan, LIU Jinping. Recent Progress on High⁃rate Niobium-based Oxides Anode Materials [J]. Chem. J. Chinese Universities, 2021, 42(10): 3005. |
[6] | RONG Hua, WANG Chungang, ZHOU Ming. Synthesis and Electrochemical Performance of FeS2 Microspheres as an Anode for Li-ion Batteries [J]. Chem. J. Chinese Universities, 2020, 41(3): 447. |
[7] | FANG Liang,DING Xiaoli,SONG Yun,LIU Dongming,LI Yongtao,ZHANG Qingan. Effect of Morphological Tuning on Electrochemical Performance of Perovskite LaCoO3 Anodes† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1456. |
[8] | LIN Weiguo,SUN Weihang,QU Zongkai,FENG Xiaolei,RONG Junfeng,CHEN Xu,YANG Wensheng. Preparation and Performance of Nano-porous Si/Graphite/C Composite Microspheres as Anode Material for Li-ion Batteries† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1216. |
[9] | WANG Qiuxian,LI Kai,YANG Beining,YUE Hongyun,YANG Shuting. Sodium Alginate Directed Synthesis of ZnFe2O4 with Micro-nano Structure and Its Performance in Lithium Ion Batteries† [J]. Chem. J. Chinese Universities, 2018, 39(9): 2039. |
[10] | LI Changqing,YANG Dongjie,XI Yuebin,QIN Yanlin,QIU Xueqing. Synthesis and Electrochemical Performance of Silica/Porous Lignin Carbon Composites as Anode Materials for Lithium-ion Batteries† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2725. |
[11] | SHI Nannan, JIANG Xue, ZHANG Ying, CHENG Kui, YE Ke, WANG Guiling, CAO Dianxue. Preparation and Performance of N-doped Carbon Coated Li4Ti5O12 as Anode Material for Lithium-ion Batteries† [J]. Chem. J. Chinese Universities, 2015, 36(5): 981. |
[12] | YUE Hongyun, WANG Qiuxian, ZHANG Xue, HUA Shuang, MA Hua, YUE Dongyuan, YANG Shuting. Controllable Synthesis and Performance of Micro-nano Structure MFe2O4(M=Zn, Co) in Lithium-ion Batteries† [J]. Chem. J. Chinese Universities, 2015, 36(4): 745. |
[13] | YIN Hong, ZHOU Dan, CONG Lina, XIE Haiming, QIU Yongqing. MoO2/C Co-coated Si/graphite Composite as Anode Materials for Lithium Ion Batteries† [J]. Chem. J. Chinese Universities, 2015, 36(10): 1990. |
[14] | SHI Huimin, WANG Hui, YIN Jinwei, ZHU Qingyun, WU Ping, Tang Yawen, Zhou Yiming, Lu Tianhong. Preparation and Lithium Storage Performance of MWCNT@SiO2 Coaxial Nanocables† [J]. Chem. J. Chinese Universities, 2015, 36(1): 175. |
[15] | FENG Hong-Bin, WEN Zhen-Hai, LI Jing-Hong*. Hydrothermal-template Route to Carbon Nanotubes and Its Application in Lithium-ion Battery [J]. Chem. J. Chinese Universities, 2010, 31(3): 588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||