 
	 
	Chem. J. Chinese Universities ›› 2016, Vol. 37 ›› Issue (3): 468.doi: 10.7503/cjcu20150593
• Analytical Chemistry • Previous Articles Next Articles
					
													HU Yaojuan*( ), HUANG Mengdan, CHEN Changyun, ZHANG Changli
), HUANG Mengdan, CHEN Changyun, ZHANG Changli
												  
						
						
						
					
				
Received:2015-07-29
															
							
															
							
															
							
																											Online:2016-03-10
																								
							
																	Published:2015-12-26
															
						Contact:
								HU Yaojuan   
																	E-mail:huyaojuan@njxzc.edu.cn
																					Supported by:CLC Number:
TrendMD:
HU Yaojuan, HUANG Mengdan, CHEN Changyun, ZHANG Changli. Microwave-assisted Fabrication of Nickel Hydroxide-Graphene Nanostructures and Their Application in Electrochemical Detection of Glucose†[J]. Chem. J. Chinese Universities, 2016, 37(3): 468.
 
																													Fig.4 CVs of the bare GCE(a), Ni(OH)2/GCE(b) and Ni(OH)2-graphene/GCE(c) in 0.1 mol/L NaOH solution at scan rate of 50 mV/s(A) and CVs of Ni(OH)2-graphene/GCE in 0.1 mol/L NaOH solution at different scan rates(B)(B) Scan rate/(mV·s-1), a—h: 25, 50, 75, 100, 125, 150, 175, 200. Inset of (B) is plot of the peak current vs. the square root of scan rate.
 
																													Fig.7 Amperometric response of Ni(OH)2-graphene/GCE to successive addition of glucose in NaOH at the applied potential of 0.50 V(A) and calibration curve for glucose obtained at the electrode(B)
| Electrode material | Sensitivity/ (μA·cm-2·mmol·L-1) | Detect limit/ (μmol·L-1) | Linear range/(mmol·L-1) | Reference | 
|---|---|---|---|---|
| Ni(OH)2-graphene | 174.70 | 2.0 | 0.01—7.5 | This work | 
| Ni(OH)2 | 29.93 | 10 | 0.5—7.0 | This work | 
| RGO-Ni(OH)2 | 11.43 | 0.6 | 0.002—3.1 | [20] | 
| CuO/TiO2 | 79.79 | 1.0 | To 2.0 | [23] | 
| Cu/graphene | 0.5 | To 4.5 | [24] | |
| Cu@Cu2O/rGO | 145.20 | 0.5 | 0.005—7.0 | [25] | 
| NiO-Pt NFs | 180.80 | 0.313 | To 3.67 | [26] | 
| CuFe2O4-MWCNTs | 0.2 | 0.0005—1.4 | [17] | 
Table 1 Analytical parameters obtained at different glucose sensors
| Electrode material | Sensitivity/ (μA·cm-2·mmol·L-1) | Detect limit/ (μmol·L-1) | Linear range/(mmol·L-1) | Reference | 
|---|---|---|---|---|
| Ni(OH)2-graphene | 174.70 | 2.0 | 0.01—7.5 | This work | 
| Ni(OH)2 | 29.93 | 10 | 0.5—7.0 | This work | 
| RGO-Ni(OH)2 | 11.43 | 0.6 | 0.002—3.1 | [20] | 
| CuO/TiO2 | 79.79 | 1.0 | To 2.0 | [23] | 
| Cu/graphene | 0.5 | To 4.5 | [24] | |
| Cu@Cu2O/rGO | 145.20 | 0.5 | 0.005—7.0 | [25] | 
| NiO-Pt NFs | 180.80 | 0.313 | To 3.67 | [26] | 
| CuFe2O4-MWCNTs | 0.2 | 0.0005—1.4 | [17] | 
| Sample | Ni(OH)2-graphene/GCE | Blood glucose monitor | ||
|---|---|---|---|---|
| Test result/(mmol·L-1) | RSD(%) | Test result/(mmol·L-1) | RSD(%) | |
| 1 | 3.36 | 2.16 | 3.32 | 2.32 | 
| 2 | 4.25 | 2.52 | 4.22 | 2.15 | 
| 3 | 5.32 | 3.27 | 5.35 | 2.28 | 
| 4 | 5.67 | 3.53 | 5.70 | 2.04 | 
| 5 | 6.89 | 3.25 | 6.84 | 2.57 | 
Table 2 Determination of glucose concentration in the blood sample by Ni(OH)2-graphene/GCE(n=5)
| Sample | Ni(OH)2-graphene/GCE | Blood glucose monitor | ||
|---|---|---|---|---|
| Test result/(mmol·L-1) | RSD(%) | Test result/(mmol·L-1) | RSD(%) | |
| 1 | 3.36 | 2.16 | 3.32 | 2.32 | 
| 2 | 4.25 | 2.52 | 4.22 | 2.15 | 
| 3 | 5.32 | 3.27 | 5.35 | 2.28 | 
| 4 | 5.67 | 3.53 | 5.70 | 2.04 | 
| 5 | 6.89 | 3.25 | 6.84 | 2.57 | 
| [1] | Lin K. C., Hung Y. T., Chen S. M., RSC Adv., 2015, 5, 2806—2812 | 
| [2] | Hui N., Wang W., Xu G., Luo X., J. Mater. Chem. B, 2015, 3, 556—561 | 
| [3] | Cheng T., Huang T., Lin H., Tung S., Chen Y., Lee C., Chiu H., ACS Appl. Mater. Inter., 2010, 2, 2773—2780 | 
| [4] | Yoon S. S., Ramadoss A., Saravanakumar B., Kim S. J., J. Electroanal. Chem., 2014, 717/718, 90—95 | 
| [5] | Wei C., Li X., Xu F., Tan H., Li Z., Sun L., Song Y., Anal. Methods, 2014, 6, 1550—1557 | 
| [6] | Wang L., Lu X., Wen C., Xie Y., Miao L., Chen S., Li H., Li P., Song Y., J. Mater. Chem. A, 2015, 3, 608—616 | 
| [7] | Wang Q., Wang Q., Li M., RSC Adv., 2015, 5, 15861—15869 | 
| [8] | Noh H., Naveen M. H., Choi Y., Choe E. S., Shim Y., Chem. Commun., 2015, 51, 6659—6662 | 
| [9] | Kong C., Tang L., Zhang X., Sun S., Yang S., Song X., Yang Z., J. Mater. Chem. A, 2014, 2, 7306—7312 | 
| [10] | Park S., Chung T. D., Kim H. C., Anal. Chem., 2003, 75(13), 3046—3049 | 
| [11] | Yuan J. H., Wang K., Xia X. H., Adv. Funct. Mater., 2005, 15, 803—809 | 
| [12] | Zhang H., Xu X., Yin Y., Wu P., Cai C., J. Electroanal. Chem., 2013, 690, 19—24 | 
| [13] | Hu Y., He F., Ben A., Chen C., J. Electroanal. Chem., 2014, 726, 55—61 | 
| [14] | Xin H., Chen L. B., Shi H. Y., Song W. B., Liu T. M., Chem. J. Chinese Universities, 2014, 35(3), 482—487 | 
| (辛华, 陈丽波, 史鸿雁, 宋文波, 刘铁梅. 高等学校化学学报, 2014, 35(3), 482—487) | |
| [15] | Chang Y. B., Yang G. M., Xu F., Yang Y. H., J. Anal. Sci., 2012, 28(5), 669—672 | 
| (常艳兵, 杨光明, 徐凤, 杨云慧. 分析科学学报, 2012, 28(5), 669—672) | |
| [16] | Kim W., Lee G., Ryu J., Park K., Park H., RSC Adv., 2014, 4, 48310—48316 | 
| [17] | Zhang Y., Zhou E., Li Y., He X., Anal. Methods, 2015, 7, 2360—2366 | 
| [18] | Liu Y., Zhang Y., Chen J., Pang H., Nanoscale,2014, 6, 10989—10994 | 
| [19] | Zhan B., Liu C., Chen H., Shi H., Wang L., Chen P., Huang W., Dong X., Nanoscale,2014, 6, 7424—7429 | 
| [20] | Zhang Y., Xu F., Sun Y., Shi Y., Wen Z., Li Z., J. Mater. Chem., 2011, 21, 16949—16954 | 
| [21] | Luo Z., Yin S., Wang K., Li H., Wang L., Xu H., Xia J., Mater. Chem. Phys., 2012, 132, 387—394 | 
| [22] | Xian Q. L., Li J., J. Inorg. Mater., 2010, 25(12), 1268—1272 | 
| (鲜青龙, 李娟. 无机材料学报, 2010, 25(12), 1268—1272) | |
| [23] | Luo S., Su F., Liu C., Li J., Liu R., Xiao Y., Li Y., Liu X., Cai Q., Talanta,2011, 86, 157—163 | 
| [24] | Luo J., Jiang S., Zhang H., Jiang J., Liu X., Anal. Chim. Acta, 2012, 709, 47—53 | 
| [25] | Huo H., Guo C., Li G., Han X., Xu C., RSC Adv., 2014, 4, 20459—20465 | 
| [26] | Dinga Y., Liu Y., Zhang L., Wanga Y., Bellagamba M., Parisi J., Li C. M., Lei Y., Electrochim. Acta, 2011, 58, 209—214 | 
| [1] | WANG Fangyuan, ZHANG Fenxian, LI Yi, GAO Jianhua, NIU Yanbing, SHEN Shaofei. Fabrication of Bionic Leaf Model and Its Application in Agarose Microfluidic Chip [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220445. | 
| [2] | ZHANG Liling, LIU Liu, ZHENG Mingqiu, FANG Wenkai, LIU Da, TANG Hongwu. Dual Signal Detection of HPV16 DNA by CRISPR/Cas12a Biosensing System Based on Upconversion Luminescent Resonance Energy Transfer [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220412. | 
| [3] | QIN Gaizhao, TANG Minghua, LAI Yalin, YUAN Liming. Chiral Metal-organic Cage MOC-PA as a Chiral Stationary Phase for Capillary Electrophoresis [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220417. | 
| [4] | XU Ruotao, WANG Qiang, WANG Weiyu, BAO Qingjia, ZHANG Zhi, LIU Zhaoyang, XU Jun, DENG Feng. In situ NMR Imaging of Solvent Infiltration on γ-Al2O3 particles [J]. Chem. J. Chinese Universities, 0, (): 20220587. | 
| [5] | ZHAO Xueqi, ZHAO Yue, XUE Jing, BAI Min, CHEN Feng, SUN Ying, SONG Daqian, ZHAO Yongxi. Nucleic Acids-Encoded Amplification for Single-cell Imaging [J]. Chem. J. Chinese Universities, 0, (): 20220572. | 
| [6] | ZHAO Hengzhi, YU Fangzhi, LI Xiangfei, LI Lele. Advances in Biosensing and imaging Based on the Integration of DNA and UCNPs [J]. Chem. J. Chinese Universities, 0, (): 20220626. | 
| [7] | WANG Shiqi, LUO Bowen, YU Jicheng, GU Zhen. Near-Infrared-Ⅱ Fluorescence Imaging for Tumor Diagnosis and Therapy [J]. Chem. J. Chinese Universities, 0, (): 20220577. | 
| [8] | SONG Lu, ZHANG Shuyang, WANG Lihua, ZUO Xiaolei, LI Min. High-throughput Biological Microarrays Based on Framework Nucleic Acids [J]. Chem. J. Chinese Universities, 0, (): 20220563. | 
| [9] | WANG Wei, ZOU Bingchen, HOU Jie, ZHOU Wanli, LUO Jianping, WANG Kangli, JIANG Kai. In⁃situ Analysis of Interfacial Reaction Process Inside Li-Ga Liquid Metal Battery [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220261. | 
| [10] | CHEN Jialu, HUANG Shuo. Application of Nanopore Sequencing Technology in the Detection of Nucleic Acid Modifications [J]. Chem. J. Chinese Universities, 2022, 43(Album-4): 20220333. | 
| [11] | WANG Di, ZHONG Keli, TANG Lijun, HOU Shuhua, LYU Chunxin. Synthesis of Schiff-based Covalent Organic Framework and Its Recognition of I ‒ [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220115. | 
| [12] | LIU Miao, LIU Ruibo, LIU Badi, QIAN Ying. Synthesis, Two-photon Fluorescence Imaging and Photodynamic Therapy of Lysosome-targeted Indole-BODIPY Photosensitizer [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220326. | 
| [13] | LI Ao, LI Lingxuan, ZUO Cuicui, CHEN Chuankai, FAN Yifan, BU Yifan, LIN Hongyu, GAO Jinhao. A Boronate-Based 19F NMR/MRI Molecular Probe for Activatable Deep-Tissue Imaging of Reactive Oxygen Species [J]. Chem. J. Chinese Universities, 0, (): 20220545. | 
| [14] | YANG Yanling, YE Deju. Recent Advance in the Development of Molecular Probes for Targeting Carbonic Anhydrases [J]. Chem. J. Chinese Universities, 0, (): 20220557. | 
| [15] | QIN Wenjie, HUANG Yizhuo, LUO Xiao, QIAN Xuhong, YANG Youjun. Probe Design Strategies for Cy7-type Cyanine Dyes [J]. Chem. J. Chinese Universities, 0, (): 20220567. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||