Chem. J. Chinese Universities ›› 2014, Vol. 35 ›› Issue (6): 1252.doi: 10.7503/cjcu20140075
• Physical Chemistry • Previous Articles Next Articles
SUO Yanhua1,2, LI Xiumin3, CHEN Gang1,*(), CUI Yingxue2, SUN Yujia2, WANG Yingjun2,*(
)
Received:
2014-01-23
Online:
2014-06-10
Published:
2014-04-29
Contact:
CHEN Gang,WANG Yingjun
E-mail:gchen@hit.edu.cn;wangying-jun@163.com
Supported by:
CLC Number:
TrendMD:
SUO Yanhua, LI Xiumin, CHEN Gang, CUI Yingxue, SUN Yujia, WANG Yingjun. Ni/SAPO-11 Promoted by Rare Earth Element Ce for Hydroisomerization of n-Heptane†[J]. Chem. J. Chinese Universities, 2014, 35(6): 1252.
Sample | SBET/(m2·g-1) | Vp/(cm3·g-1) | D/nm | Sample | SBET/(m2·g-1) | Vp/(cm3·g-1) | D/nm |
---|---|---|---|---|---|---|---|
SAPO-11 | 141 | 0.14 | 3.9 | Ni-2%Ce/SAPO-11 | 130 | 0.13 | 4.1 |
Ni/SAPO-11 | 96 | 0.11 | 4.8 | Ni-10%Ce/SAPO-11 | 73 | 0.07 | 4.1 |
Ni-0.5%Ce/SAPO-11 | 113 | 0.12 | 4.4 |
Table 1 BET data of different catalysts*
Sample | SBET/(m2·g-1) | Vp/(cm3·g-1) | D/nm | Sample | SBET/(m2·g-1) | Vp/(cm3·g-1) | D/nm |
---|---|---|---|---|---|---|---|
SAPO-11 | 141 | 0.14 | 3.9 | Ni-2%Ce/SAPO-11 | 130 | 0.13 | 4.1 |
Ni/SAPO-11 | 96 | 0.11 | 4.8 | Ni-10%Ce/SAPO-11 | 73 | 0.07 | 4.1 |
Ni-0.5%Ce/SAPO-11 | 113 | 0.12 | 4.4 |
Sample | Conversion(%) | Selectivity(%) | Isomer distribution(%) | ||
---|---|---|---|---|---|
MB | DB | TB | |||
Ni/SAPO-11 | 35.8 | 50.6 | 66.4 | 32.3 | 1.3 |
0.5%Ce-Ni/SAPO-11 | 35.3 | 66.8 | 67.6 | 31.2 | 1.2 |
2%Ce-Ni/SAPO-11 | 28.8 | 82.7 | 72.5 | 26.7 | 0.8 |
10%Ce-Ni/SAPO-11 | 18.6 | 76.2 | 86.3 | 13.1 | 0.6 |
Table 2 Effect of the amount of Ce for the performance of the isomerization of n-heptane*
Sample | Conversion(%) | Selectivity(%) | Isomer distribution(%) | ||
---|---|---|---|---|---|
MB | DB | TB | |||
Ni/SAPO-11 | 35.8 | 50.6 | 66.4 | 32.3 | 1.3 |
0.5%Ce-Ni/SAPO-11 | 35.3 | 66.8 | 67.6 | 31.2 | 1.2 |
2%Ce-Ni/SAPO-11 | 28.8 | 82.7 | 72.5 | 26.7 | 0.8 |
10%Ce-Ni/SAPO-11 | 18.6 | 76.2 | 86.3 | 13.1 | 0.6 |
Fig.5 Stability test of the Ni-2%Ce/SAPO-11 catalyst for the isomerization of n-heptaneReduction temperature: 500 ℃(for 6 h); reaction temperature: 300 ℃; weight hourly space velocity=3.52 h-1; n(H2)/n(n-C7H16)=12.
[1] | Zhu Q. Y., Petrochemical Industry Technology, 2012 , 19(2), 66—70 |
( 朱庆云.石化技术, 2012,19(2), 66—70 ) | |
[2] | Zhang F., Geng C. H., Gao Z. X., Zhou J. L., Chinese Journal Catalysis, 2004, 25(6), 431—433 |
( 张飞, 耿承辉, 高志贤, 周敬来.催化学报, 2004,25(6), 431—433 ) | |
[3] | Li X.B., Chang Y., Wang H. Y., Ma J., Wei M., Journal of Fuel Chemistry and Technology, 2007, 35(2), 228—232 |
( 李学斌, 常勇, 王海彦, 马俊, 魏民.燃料化学学报, 2007,35(2), 228—232 ) | |
[4] | Miyaji A., Ohnishi R., Okuhara T., Applied Catalysis A: General, 2004, 262, 143—148 |
[5] | Föttinger K., Zorn K., Vinek H., Applied Catalysis A: General, 2005, 284, 69—75 |
[6] | Wang Y. J., Wang X. P., Chai S. H., Cai T. X., Chem. J. Chinese Universities, 2003, 24(7), 1281—1284 |
(汪颖军, 王新平, 柴松海, 蔡天锡.高等学校化学学报, 2003,24(7), 1281—1284 ) | |
[7] | Shang S. N., Xu X., Xie P. F., Le Y. H., Hua W. M., Gao Z., Chinese Journal Catalysis, 2013, 34(5), 898—905 |
( 尚书宁, 徐欣, 谢鹏飞, 乐英红, 华伟明, 高滋.催化学报, 2013,34(5), 898—905 ) | |
[8] | Cannan T. R., Flanigen E. M., Gajek R. T., Lok B. M., Messina C., Patton R. L., Crystalline Silicoaluminophosphates US 4440871A, 1984-04-03 |
[9] | Liu W. Q., Liu P., Jiang H. Y., Shang T. M., Ren J., Sun Y. H., Chinese J. Inorg. Chem., 2010, 26(7), 1218—1224 |
( 刘维桥, 刘平, 蒋海燕, 尚通明, 任杰, 孙予罕.无机化学学报, 2010,26(7), 1218—1224 ) | |
[10] | Liu W. Q., Lei W. N., Liu P., Shang T. M., Ren J., Sun Y. H., Acta Chimica Sinica, 2010, 68(18), 1781—1786 |
( 刘维桥, 雷卫宁, 刘平, 尚通明, 任杰, 孙予罕.化学学报, 2010,68(18), 1781—1786 ) | |
[11] | Wei R . P., Gu Y. B., Wang J., Science in China Series B: Chemistry, 2008, 38(1), 20—26 |
( 魏瑞平, 顾焰波, 王军.中国科学B辑: 化学, 2008,38(1), 20—26 ) | |
[12] | Liu P., Wang J., Yao Y., Journal of Nanjing University of Technology ( Natural Science Edition ), 2011, 33(1), 8—13 |
( 刘平, 王军, 姚月. 南京工业大学学报(自然科学版), 2011 , 33(1), 8—13 ) | |
[13] | Liu W. Q., Shang T. M., Zhou Q. F., Liu P., Ren J., Sun Y. H., Journal of Fuel Chemistry and Technology, 2010, 38(2), 212—217 |
( 刘维桥, 尚通明, 周全法, 刘平, 任杰, 孙予罕.燃料化学学报, 2010 ,38(2), 212—217 ) | |
[14] | Gherib A., Aouissi A., Rives A., Fournier M., Hubaut R., Chinese Journal Catalysis, 2007 , 28(12), 1041—1046 |
(Gherib A., Aouissi A., Rives A., Fournier M., Hubaut R., 催化学报, 2007 ,28(12), 1041—1046) | |
[15] | Liang J., Wang F. P., Progress in Chemistry, 2008, 20(4), 457—463 |
( 梁君, 王福平.化学进展, 2008,20(4), 457—463) | |
[16] | Pang X. M., Zhu W. D., Chang X. P., Wang B. J., Li S. B., Journal of Molecular Catalysis, 2004 , 18(2), 153—160 |
( 庞新梅, 朱卫东, 常晓平, 王宝杰, 李树本.分子催化, 2004 ,18(2), 153—160 ) | |
[17] | Xiao T. C., An L. D., Wang H. L., Journal of Molecular Catalysis, 1994 , 8(6), 429—436 |
( 肖天存, 安立敦, 王弘立.分子催化, 1994,8(6), 429—436 ) | |
[18] | Yan A. Z., Liu Y., Yu Z. C., Xu Q. H., Chem. J. Chinese Universities, 1990, 11(12), 1391—1395 |
( 严爱珍, 刘杨, 于振臣, 须沁华.高等学校化学学报, 1990,11(12), 1391—1395 ) | |
[19] | Zhang Y. W., Shen M. Q., Wu X. D., Weng R., Zhang Z. H., Tian R., Chi K. B., Acta Physico-Chimica Sinica, 2006, 22(12), 1495—1500 |
( 张钺伟, 沈美庆, 吴晓东, 翁端, 张志华, 田然, 迟克彬.物理化学学报, 2006,22(12), 1495—1500 ) | |
[20] | Garcia-Gutierrez J. L., Cano J. L., Aleman-Vazquez L. O., Jimenez-Cruz F., Fuels, 2012, 94, 532—543 |
[21] | Xu J. S., Ying J. Y., Angew. Chem. Int. Ed., 2006, 45, 6700—6704 |
[22] | Yang Y. F., Li X. C., Lai Z. H., Chen J. R., Chinese Rare Earths, 2006, 27(3), 53—56 |
( 杨沂凤, 黎先财, 赖志华, 陈娟荣.稀土, 2006,27(3), 53—56 ) | |
[23] | Houzvicka J., Hansildaar S., Nienhuis J. G., Ponec V., Applied Catalysis A: General, 1999, 176(l), 83—89 |
[1] | LIU Suyu, DING Fei, LI Qian, FAN Chunhai, FENG Jing. Azobenzene-integrated DNA Nanomachine [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220122. |
[2] | GAO Jian, FENG Yiyu, FANG Wenyu, WANG Hui, GE Jing, FENG Wei. Alkane Grafted Phase Change Azobenzene Materials Based on Low Temperature Heat Release [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220146. |
[3] | YANG Lijun, YU Yang, ZHANG Lei. Construction of Dual-functional 2D/3D Hydrid Co2P-CeO x Heterostructure Integrated Electrode for Electrocatalytic Urea Oxidation Assisted Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220082. |
[4] | HOU Congcong, WANG Huiying, LI Tingting, ZHANG Zhiming, CHANG Chunrui, AN Libao. Preparation and Electrochemical Properties of N-CNTs/NiCo-LDH Composite [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220351. |
[5] | CHU Mingyue, LI Fengbo, GAO Ning, YANG Xin, YU Tingting, MA Huiyuan, YANG Guixin, PANG Haijun. Construction of a Coronal Polyoxometalate-based Composite Film for Determination of Nitrite [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210579. |
[6] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
[7] | FAN Ye, HAN Huihui, FANG Yun, FENG Ruiqin, XIA Yongmei. Facile Synthesis of Hollow Nickel Submicrospheres with Hierarchical Nano-structure and Its Catalytic Hydrogenation of Phenol [J]. Chem. J. Chinese Universities, 2021, 42(6): 1801. |
[8] | WANG Yimeng, LIU Kai, WANG Baoguo. Coating Strategies of Ni-rich Layered Cathode in LIBs [J]. Chem. J. Chinese Universities, 2021, 42(5): 1514. |
[9] | XIAO Zhaozhong, MA Zhi, PIAO Lingyu. Co-catalytic Effect of Ni2P on Photocatalytic Formic Acid Dehydrogenation over Different Semiconductors [J]. Chem. J. Chinese Universities, 2021, 42(12): 3692. |
[10] | ZHAO Guoqing, YUAN Zhao, WANG Lian, GUO Zhuo. Preparation of Ni2P/N, S co-Doped Reduced Graphene Oxide Composites and Their Electrocatalytic Properties for Hydrogen Evolution† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1575. |
[11] | SUN Qiangqiang, CAO Baoyue, ZHOU Chunsheng, ZHANG Guochun, WANG Zenglin. Enhancing Hydrogen Evolution Performance of a Regular Cube NiCu Nanocrystalline Electrocatalyst Fabricated by Normal Pluse Electrodeposition [J]. Chem. J. Chinese Universities, 2020, 41(6): 1287. |
[12] | LIU Lu,WU Hanyue,LI Jing,SHE Lan. Tuning Microstructures of Iron-Nickel Alloy Catalysts for Efficient Oxygen Evolution Reaction [J]. Chem. J. Chinese Universities, 2020, 41(5): 1083. |
[13] | WANG Qishun, ZHANG Zeshu, WANG Huan, LIU Yu, SONG Shuyan, ZHANG Hongjie. Synthesis and Enzymatic Activity of Ni, Ru Co-doped CePO4 Nanomaterials [J]. Chem. J. Chinese Universities, 2020, 41(5): 947. |
[14] | JIANG Yuanyuan, LI Boyu, LU Yizhong, WU Tongshun, HAN Dongxue. Oxygen Evolution Reaction Electrocatalytic Performance Analysis of Electroless Plated Ni-Bx [J]. Chem. J. Chinese Universities, 2020, 41(12): 2774. |
[15] | XIA Xiaoli,TAN Jingjing,WEI Caiyun,ZHAO Yongxiang. Molybdenum Modified Nickel Phyllosilicates Catalyst for Maleic Anhydride Hydrogenation† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||