Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (5): 20240531.doi: 10.7503/cjcu20240531
• Physical Chemistry • Previous Articles Next Articles
LU Yanrong1, SHENTU Jiangtao1, LI Yiwei1, MAO Yebing2,3(), LI Xiangyuan1,2(
)
Received:
2024-12-04
Online:
2025-05-10
Published:
2025-02-26
Contact:
LI Xiangyuan
E-mail:maoyb@scu.edu.cn;xyli@scu.edu.cn
Supported by:
CLC Number:
TrendMD:
LU Yanrong, SHENTU Jiangtao, LI Yiwei, MAO Yebing, LI Xiangyuan. Minimized Reaction Network Method for Pyrolysis Mechanisms of n-Alkanes[J]. Chem. J. Chinese Universities, 2025, 46(5): 20240531.
Fuel | Type | Mechanism | Species | Reactions | Comment |
---|---|---|---|---|---|
n⁃Heptane | Detailed | LLNL3.1[ | 654 | 2827 | Pyrolysis and oxidation |
n⁃Heptane | Reduced | Wu et al.[ | 44 | 166 | Pyrolysis |
n⁃Heptane | MRN | This work | 27 | 46 | Pyrolysis |
n⁃Decane | Detailed | Zeng et al.[ | 234 | 1452 | Pyrolysis and oxidation |
n⁃Decane | Detailed | Gong et al.[ | 298 | 1104 | Pyrolysis |
n⁃Decane | Reduced | Xiao[ | 96 | 256 | Pyrolysis and oxidation |
n⁃Decane | MRN | This work | 27 | 45 | Pyrolysis |
n⁃Decane and n⁃dodecane | Detailed | rev1stGen[ | 1942 | 7849 | Pyrolysis and oxidation |
n⁃Dodecane | Detailed | Dahm et al.[ | 154 | 1175 | Pyrolysis |
n⁃Dodecane | Detailed | Zhou et al.[ | 146 | 842 | Pyrolysis |
n⁃Dodecane | MRN | This work | 27 | 45 | Pyrolysis |
n⁃Alkanes up to n⁃dodecane | Detailed | JetSurF2.0[ | 348 | 2163 | Pyrolysis and oxidation |
n⁃Alkanes up to n⁃hexadecane | Semi⁃detailed | Ranzi et al.[ | 368 | 14462 | Pyrolysis and oxidation |
n⁃Heptane, n⁃decane, n⁃dodecane | MRN | This work | 32 | 58 | Pyrolysis |
Table 1 Comparison of species number and reaction number of different n⁃alkanes mechanisms
Fuel | Type | Mechanism | Species | Reactions | Comment |
---|---|---|---|---|---|
n⁃Heptane | Detailed | LLNL3.1[ | 654 | 2827 | Pyrolysis and oxidation |
n⁃Heptane | Reduced | Wu et al.[ | 44 | 166 | Pyrolysis |
n⁃Heptane | MRN | This work | 27 | 46 | Pyrolysis |
n⁃Decane | Detailed | Zeng et al.[ | 234 | 1452 | Pyrolysis and oxidation |
n⁃Decane | Detailed | Gong et al.[ | 298 | 1104 | Pyrolysis |
n⁃Decane | Reduced | Xiao[ | 96 | 256 | Pyrolysis and oxidation |
n⁃Decane | MRN | This work | 27 | 45 | Pyrolysis |
n⁃Decane and n⁃dodecane | Detailed | rev1stGen[ | 1942 | 7849 | Pyrolysis and oxidation |
n⁃Dodecane | Detailed | Dahm et al.[ | 154 | 1175 | Pyrolysis |
n⁃Dodecane | Detailed | Zhou et al.[ | 146 | 842 | Pyrolysis |
n⁃Dodecane | MRN | This work | 27 | 45 | Pyrolysis |
n⁃Alkanes up to n⁃dodecane | Detailed | JetSurF2.0[ | 348 | 2163 | Pyrolysis and oxidation |
n⁃Alkanes up to n⁃hexadecane | Semi⁃detailed | Ranzi et al.[ | 368 | 14462 | Pyrolysis and oxidation |
n⁃Heptane, n⁃decane, n⁃dodecane | MRN | This work | 32 | 58 | Pyrolysis |
Fuel | Type of reaction | Reaction |
---|---|---|
n⁃Heptane | Radical chain reaction initiation | C7H16⇌C3H7 +C4H9 |
C7H16⇌C7H15 +H | ||
Radical chain propagation reaction | C7H16 +H⇌C7H15 +H2 | |
C7H16 +CH3⇌C7H15 +CH4 | ||
C7H15⇌C5H11+C2H4 | ||
C7H15⇌CH3 +C6H12 | ||
n⁃Decane | Radical chain reaction initiation | C10H22⇌C6H13 +C4H9 |
C10H22⇌C10H21 +H | ||
Radical chain propagation reaction | C10H22 +H⇌C10H21 +H2 | |
C10H22 +CH3⇌C10H21 +CH4 | ||
C10H21⇌C4H9+C6H12 | ||
n⁃Dodecane | Radical chain reaction initiation | C12H26⇌C6H13 + C6H13 |
C12H26⇌C12H25 +H | ||
Radical chain propagation reaction | C12H26 +H⇌C12H25 +H2 | |
C12H26 +CH3 ⇌C12H25 +CH4 | ||
C12H25⇌C6H13+C6H12 | ||
Fundamental mechanism for C0—C6 | ||
H2⇌H+H | C3H8⇌C3H7 +H | C4H9⇌C3H6 +CH3 |
CH4⇌CH3 +H | C3H8+H⇌C3H7 +H2 | C4H9⇌C4H8 +H |
CH4 +H⇌CH3 +H2 | C3H7⇌CH3 +C2H4 | C4H8⇌C3H5 +CH3 |
CH3⇌CH2 +H | C3H7⇌C3H6 +H | C4H8⇌C4H7 +H |
C2H6⇌CH3 +CH3 | C3H6⇌C2H3 +CH3 | C4H8 +H⇌C4H7 +H2 |
C2H6⇌C2H5 +H | C3H6⇌C3H5 +H | C4H7⇌C2H4 +C2H3 |
C2H6 +H⇌C2H5 +H2 | C3H6 +H⇌C3H5 +H2 | C4H7⇌C4H6 +H |
C2H5⇌C2H4 +H | C3H6 +CH3⇌C3H5 +CH4 | C4H6⇌C2H3 +C2H3 |
C2H4⇌C2H3 +H | C3H5 ⇌C2H2 +CH3 | C4H6⇌C4H5+H |
C2H4 +H⇌C2H3 +H2 | C3H5 ⇌C3H4 +H | C4H5⇌C2H2+C2H3 |
C2H4 +CH3 ⇌C2H3 +CH4 | C4H10⇌2C2H5 | C4H6 +H⇌C4H5 +H2 |
C2H3⇌C2H2 +H | C4H10⇌C4H9 +H | C5H11⇌C2H5 +C3H6 |
C2H2⇌C2H+H | C4H10 +H⇌C4H9 +H2 | C6H12 ⇌C4H9 +C2H3 |
C3H8⇌CH3 +C2H5 | C4H9⇌C2H4 +C2H5 | C6H13 ⇌C4H9 +C2H4 |
Table 2 Reactions for n-alkane pyrolysis developed in this work
Fuel | Type of reaction | Reaction |
---|---|---|
n⁃Heptane | Radical chain reaction initiation | C7H16⇌C3H7 +C4H9 |
C7H16⇌C7H15 +H | ||
Radical chain propagation reaction | C7H16 +H⇌C7H15 +H2 | |
C7H16 +CH3⇌C7H15 +CH4 | ||
C7H15⇌C5H11+C2H4 | ||
C7H15⇌CH3 +C6H12 | ||
n⁃Decane | Radical chain reaction initiation | C10H22⇌C6H13 +C4H9 |
C10H22⇌C10H21 +H | ||
Radical chain propagation reaction | C10H22 +H⇌C10H21 +H2 | |
C10H22 +CH3⇌C10H21 +CH4 | ||
C10H21⇌C4H9+C6H12 | ||
n⁃Dodecane | Radical chain reaction initiation | C12H26⇌C6H13 + C6H13 |
C12H26⇌C12H25 +H | ||
Radical chain propagation reaction | C12H26 +H⇌C12H25 +H2 | |
C12H26 +CH3 ⇌C12H25 +CH4 | ||
C12H25⇌C6H13+C6H12 | ||
Fundamental mechanism for C0—C6 | ||
H2⇌H+H | C3H8⇌C3H7 +H | C4H9⇌C3H6 +CH3 |
CH4⇌CH3 +H | C3H8+H⇌C3H7 +H2 | C4H9⇌C4H8 +H |
CH4 +H⇌CH3 +H2 | C3H7⇌CH3 +C2H4 | C4H8⇌C3H5 +CH3 |
CH3⇌CH2 +H | C3H7⇌C3H6 +H | C4H8⇌C4H7 +H |
C2H6⇌CH3 +CH3 | C3H6⇌C2H3 +CH3 | C4H8 +H⇌C4H7 +H2 |
C2H6⇌C2H5 +H | C3H6⇌C3H5 +H | C4H7⇌C2H4 +C2H3 |
C2H6 +H⇌C2H5 +H2 | C3H6 +H⇌C3H5 +H2 | C4H7⇌C4H6 +H |
C2H5⇌C2H4 +H | C3H6 +CH3⇌C3H5 +CH4 | C4H6⇌C2H3 +C2H3 |
C2H4⇌C2H3 +H | C3H5 ⇌C2H2 +CH3 | C4H6⇌C4H5+H |
C2H4 +H⇌C2H3 +H2 | C3H5 ⇌C3H4 +H | C4H5⇌C2H2+C2H3 |
C2H4 +CH3 ⇌C2H3 +CH4 | C4H10⇌2C2H5 | C4H6 +H⇌C4H5 +H2 |
C2H3⇌C2H2 +H | C4H10⇌C4H9 +H | C5H11⇌C2H5 +C3H6 |
C2H2⇌C2H+H | C4H10 +H⇌C4H9 +H2 | C6H12 ⇌C4H9 +C2H3 |
C3H8⇌CH3 +C2H5 | C4H9⇌C2H4 +C2H5 | C6H13 ⇌C4H9 +C2H4 |
Case | Dimension | Inlet mass flow rate/ (g·s-1) | Inlet temperature, Tin/K | Operating pressure,p/MPa | Wall temperature, Twall/K | Wall heat flux, qw/(kW·m-2) | Fuel |
---|---|---|---|---|---|---|---|
1 | 2D | 0.05 | 573 | 0.1 | 973 | — | n⁃Heptane |
2 | 2D | 1.00 | 573 | 0.1 | 973 | — | n⁃Heptane |
3 | 2D | 1.00 | 573 | 2.0 | 973 | — | n⁃Heptane |
4 | 2D | 0.05 | 573 | 2.0 | 973 | — | n⁃Heptane |
5 | 3D | 1.00 | 753 | 4.0 | — | 640 | n⁃Decane |
Table 3 Conditions of multi-dimensional numerical cases
Case | Dimension | Inlet mass flow rate/ (g·s-1) | Inlet temperature, Tin/K | Operating pressure,p/MPa | Wall temperature, Twall/K | Wall heat flux, qw/(kW·m-2) | Fuel |
---|---|---|---|---|---|---|---|
1 | 2D | 0.05 | 573 | 0.1 | 973 | — | n⁃Heptane |
2 | 2D | 1.00 | 573 | 0.1 | 973 | — | n⁃Heptane |
3 | 2D | 1.00 | 573 | 2.0 | 973 | — | n⁃Heptane |
4 | 2D | 0.05 | 573 | 2.0 | 973 | — | n⁃Heptane |
5 | 3D | 1.00 | 753 | 4.0 | — | 640 | n⁃Decane |
1 | Dagaut P., Gaïl S., J. Phys. Chem. A, 2007, 111, 3992—4000 |
2 | Kim D., Martz J., Violi A., Combust. Flame, 2014, 161, 1489—1498 |
3 | Yu J., Ju Y., Gou X., Fuel, 2016, 166, 211—218 |
4 | Mao Y., Yu L., Qian Y., Wang S., Wu Z., Raza M., Zhu L., Hu X., Lu X., Combust. Flame, 2021, 229, 111401 |
5 | Goel P., Boehman A. L., Energy Fuels, 2000, 14, 953—962 |
6 | Ward T. A., Ervin J. S., Striebich R. C., Zabarnick S., J. Propuls. Power, 2004, 20, 394—402 |
7 | Wang Y., Zhao Y., Liang C., Chen Y., Zhang Q., Li X., J. Anal. Appl. Pyrolysis, 2017, 128, 412—422 |
8 | Jiao S., Li S., Pu H., Dong M., Shang Y., Energy Fuels, 2018, 32, 4040—4048 |
9 | Kumar P., Kunzru D., Ind. Eng. Chem. Res., 1985, 24, 774—782 |
10 | Farrell J. T., Cernansky N. P., Dryer F. L., Law C. K., Friend D. G., McDavid R. M., Patel A. K., Mueller C. J., Pitsch H., SAE Tech. Paper, Detroit, 2007 |
11 | Xu R., Wang K., Banerjee S., Shao J., Parise T., Zhu Y., Wang S., Movaghar A., Lee D., Zhao R., Han X., Gao Y., Lu T., Brezinsky K., Egolfopoulos F., Davidson D., Hanson R., Bowman C., Wang H., Combust. Flame, 2018, 193, 520—537 |
12 | ANSYS I., Ansys Fluent User’s Guide, Release 2022 R1 Ed., Canonsburg, PA 15317, 2022 |
13 | Weltin E., J. Chem. Educ., 1994, 71, 295—297 |
14 | Li X. Y., Shentu J. T., Li Y. W., Li J. Q., Wang J. B., Chem. J. Chinese Universities, 2020, 41(4), 772—779 |
李象远, 申屠江涛, 李宜蔚, 李娟琴, 王静波. 高等学校化学学报, 2020, 41(4), 772—779 | |
15 | Li X. Y., Yao X. X., Shentu J. T., Sun X. H., Li J. Q., Liu M. X., Xu S. M., Chem. J. Chinese Universities, 2020, 41(3), 512—520 |
李象远, 姚晓霞, 申屠江涛, 孙晓慧, 李娟琴, 刘明夏, 许诗敏. 高等学校化学学报, 2020, 41(3), 512—520 | |
16 | Li Y. W., Shentu J. T., Wang J. B., Li X. Y., Chem. J. Chinese Universities, 2021, 42(6), 1871—1880 |
李宜蔚, 申屠江涛, 王静波, 李象远. 高等学校化学学报, 2021, 42(6), 1871—1880 | |
17 | Shentu J., Lu Y., Li Y., Li J., Mao Y., Li X., Molecules, 2023, 28, 7695 |
18 | Mehl M., Pitz W. J., Westbrook C. K., Curran H. J., Proc. Combust. Inst., 2011, 33, 193—200 |
19 | Wu Y., Wang X., Song Q., Zhao L., Su H., Li H., Zeng X., Zhao D., Xu J., Combust. Flame, 2018, 194, 233—244 |
20 | Zeng M., Yuan W., Wang Y., Zhou W., Zhang L., Qi F., Li Y., Combust. Flame, 2014, 161, 1701—1715 |
21 | Gong C., Ning H., Xu J., Li Z., Zhu Q., Li X., J. Anal. Appl. Pyrolysis, 2014, 110, 463—469 |
22 | Xiao G., Energy Fuels, 2020, 34, 6367—6382 |
23 | Malewicki T., Brezinsky K., Proc. Combust. Inst., 2013, 34, 361—368 |
24 | Dahm K. D., Virk P. S., Bounaceur R., Battin⁃Leclerc F., Marquaire P. M., Fournet R., Daniau E., Bouchez M., J. Anal. Appl. Pyrol., 2004, 71, 865—881 |
25 | Zhou W., Jia Z., Qin J., Bao W., Yu B., Chem. Eng. J., 2014, 243, 127—136 |
26 | Wang H., Dames E., Sirjean B., Sheen D., Tangko R., Violi A., JetSurF Version 2.0, 2018. http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF2.0/index.html |
27 | Ranzi E., Frassoldati A., Granata S., Faravelli T., Ind. Eng. Chem. Res., 2004, 44, 5170—5183 |
28 | Razafinarivo N., Bounaceur R., Burklé⁃Vitzthum V., Lannuzel F., Michels R., Scacchi G., Marquaire P. M., J. Anal. Appl. Pyrolysis, 2016, 117, 282—289 |
29 | Yang F., Deng F., Zhang P., Hu E., Cheng Y., Huang Z., Energy Fuels, 2016, 30, 5130—5137 |
30 | Zsély I. G., Varga T., Nagy T., Cserháti M., Turányi T., Peukert S., Braun⁃Unkhoff M., Naumann C., Riedel U., Energy, 2012, 43, 85—93 |
31 | Ren H., Wang J., Li X., Combust. Dyn., 2021, https://cds.scu.edu.cn |
32 | Chemkin⁃Pro 15112, Reaction Design, San Diego, CA, USA, 2011 |
33 | Li H., Wu Y., Yu H., Wang X., J. Prvopuls. Technol., 2018, 39, 827—834 |
34 | Zhang L., Yin R., Wang J., Li X., ACS Omega, 2022, 7, 22351—22362 |
[1] | LIAO Jiashu, LIU Jianxing, WANG Sishu, CHEN Bo, CHEN Jianjun, WEI Jianjun, YE Zongbiao, GOU Fujun. Kinetics of Methane Decomposition in the Catalytic Liquid Metal Reactor for Hydrogen Production [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230421. |
[2] | BAO Chunzhu, XIANG Zhonghua. Pyrolysis-free Strategy of Covalent Organic Polymers-based Oxygen Reduction Electrocatalytic Materials [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220715. |
[3] | WANG Haochen, ZHAO Jun. Pyrolysis Mechanism of Flax Fiber Under Different Heating Rates [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230131. |
[4] |
HAN Hongjing,GE Qin,CHEN Yanguang,WANG Haiying,ZHAO Hongzhi,WANG Yizhen,ZHANG Yanan,DENG Jitong,SONG Hua,ZHANG Mei.
Production of Phenolic Compounds from Bagasse Lignin via Catalytic Pyrolysis of Ca1-xPrxFe |
[5] | WANG Yingyu, ZHAO Huaiyuan, HOU Zhaoyin. Synthesis of Fe2O3/rGO/N-rGO Catalyst and Its Application in Selective Hydrogenation of Nitrobenzene† [J]. Chem. J. Chinese Universities, 2018, 39(8): 1750. |
[6] | CHENG Yanyan, SUI Guanghui, CHEN Zhimin, LIU Huan, DUAN Yajun, WANG Xiaofeng, YANG Xiaomin, WANG Zichen. Highly Efficient Utilization of Rice Husk Char to Prepare Carbon Adsorbent and Calcium Silicate† [J]. Chem. J. Chinese Universities, 2018, 39(6): 1132. |
[7] | WANG Wenliang,SHI Yujie,WANG Shaohua,DANG Zepan,LI Xinping. Pyrolysis Behavior and Product Characteristics of Microwave co-Pyrolysis of Cellulose and Waste Tire† [J]. Chem. J. Chinese Universities, 2018, 39(5): 964. |
[8] | SUN Liwei, LUO Jingyi, TANG Shaokun. Synthesis of Dual-functionalized Ionic Liquid and Application in CO2 Absorption† [J]. Chem. J. Chinese Universities, 2017, 38(9): 1578. |
[9] | CHEN Yanguang, WANG Xinhui, HAN Hongjing, WANG Haiying, AN Hongyu, SONG Hua, GONG Xuzhong, ZHANG Jian. Production of Phenolic Compounds from Bagasse Lignin via Catalytic Pyrolysis of CaZr1-xFexO3† [J]. Chem. J. Chinese Universities, 2017, 38(2): 252. |
[10] | WANG Wenliang, GENG Jing, LI Lufei, CHANG Jianmin. Catalytic Properties of Fast Pyrolysis Char Loaded with Cu-Zn on Alkali Lignin Pyrolysis for Monophenols† [J]. Chem. J. Chinese Universities, 2016, 37(4): 736. |
[11] | GE Kaikai, QIU Wenfeng, HAN Weijian, YE Li, ZHAO Aijun, ZHAO Tong. Synthesis, Characterization and Pyrolysis Behavior of ZrB2/SiC Precursor† [J]. Chem. J. Chinese Universities, 2014, 35(9): 2050. |
[12] | LI Yingli, NING Hongbo, ZHU Quan, LI Xiangyuan. Kinetics Simulation of Ethylbenzene Pyrolysis Under Supercritical Pressure† [J]. Chem. J. Chinese Universities, 2014, 35(3): 576. |
[13] | LI Jing, WANG Xian-Bao, YANG Jia, YANG Xu-Yu, WAN Li. Synthesis of Nitrogen-doped Graphene and Its Electrocatalytic Performance Toward Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2013, 34(4): 800. |
[14] | CHEN Xi, LI Hui, SUN Tong, CUI Xiao-Li. One-step Flame-assisted Pyrolysis Synthesis of Fe Doped Carbon Incorporated TiO2 and Its Photocatalytic Activity [J]. Chem. J. Chinese Universities, 2013, 34(12): 2855. |
[15] | ZHU Yi-Hua, WANG Hao, SHAO Chang-Wei. Synthesis and Characterization of SiC Ceramic Precursor with High Boron Content [J]. Chem. J. Chinese Universities, 2013, 34(10): 2415. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||