Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (7): 20240099.doi: 10.7503/cjcu20240099
• Physical Chemistry • Previous Articles Next Articles
HE Jun1, ZHU Aoyang1, WEI Yuchen1, ZHU Yiquan1, JIANG Li2, HE Xiaojun1()
Received:
2024-02-28
Online:
2024-07-10
Published:
2024-05-06
Contact:
HE Xiaojun
E-mail:xjhe@ahut.edu.cn
Supported by:
CLC Number:
TrendMD:
HE Jun, ZHU Aoyang, WEI Yuchen, ZHU Yiquan, JIANG Li, HE Xiaojun. Preparation and Zinc Storage Properties of Three-dimensional Nitrogen-doped Hierarchical Porous Carbon Nanosheets[J]. Chem. J. Chinese Universities, 2024, 45(7): 20240099.
Sample | Dap/nm | SBET/(m2·g-1) | Smic/(m2·g-1) | Vt/(cm3·g-1) | Vmic/(cm3·g-1) |
---|---|---|---|---|---|
N⁃CN0 | 4.67 | 208 | 35 | 0.24 | 0.02 |
N⁃CN1 | 2.55 | 1347 | 570 | 0.86 | 0.29 |
N⁃CN2 | 2.51 | 1260 | 677 | 0.79 | 0.35 |
N⁃CN3 | 2.75 | 2360 | 1302 | 1.63 | 0.24 |
N⁃CN4 | 2.56 | 1514 | 567 | 1.01 | 0.29 |
Table 1 Pore structure parameters of N-CNs*
Sample | Dap/nm | SBET/(m2·g-1) | Smic/(m2·g-1) | Vt/(cm3·g-1) | Vmic/(cm3·g-1) |
---|---|---|---|---|---|
N⁃CN0 | 4.67 | 208 | 35 | 0.24 | 0.02 |
N⁃CN1 | 2.55 | 1347 | 570 | 0.86 | 0.29 |
N⁃CN2 | 2.51 | 1260 | 677 | 0.79 | 0.35 |
N⁃CN3 | 2.75 | 2360 | 1302 | 1.63 | 0.24 |
N⁃CN4 | 2.56 | 1514 | 567 | 1.01 | 0.29 |
Sample | Electrolyte | Current density/(A·g-1) | Capacitive/(mA·h·g-1) | Energy density/(W·h·kg–1) | Ref. |
---|---|---|---|---|---|
CNT@PC sponge⁃LMeP | 2 mol/L ZnSO4 | 0.1 | 175.3 | 150.8 | [ |
CFe0.2 | 2 mol/L ZnSO4 | 0.5 | 180 | 120.2 | [ |
AL⁃KNPC⁃800 | 1 mol/L ZnSO4 | 0.1 | 360 F/g | 126.3 | [ |
OLDC⁃750 | 2 mol/L ZnSO4 | 0.1 | 306.8 F/g | 136.3 | [ |
DPCs⁃800 | 2 mol/L ZnSO4 | 0.2 | 140.0 | 111.1 | [ |
Nano MnO2 | 2 mol/L ZnSO4 | 0.1 | 54.1 | 58.6 | [ |
Bio⁃carbon | 1 mol/L Zn(CF3SO3)2 | 0.1 | 85.0 | 52.7 | [ |
MCHCNF⁃2 | 3 mol/L Zn(CF3SO3)2 | 0.1 | 191.4 | 133.1 | [ |
NPCN | 2 mol/L ZnSO4 | 0.25 | 106.0 | 101.0 | [ |
N⁃CN3 | 2 mol/L ZnSO4 | 0.2 | 157.6 | 126.5 | This work |
Table 2 Comparison of specific capacity of N-CN3 electrode with that reported in literature
Sample | Electrolyte | Current density/(A·g-1) | Capacitive/(mA·h·g-1) | Energy density/(W·h·kg–1) | Ref. |
---|---|---|---|---|---|
CNT@PC sponge⁃LMeP | 2 mol/L ZnSO4 | 0.1 | 175.3 | 150.8 | [ |
CFe0.2 | 2 mol/L ZnSO4 | 0.5 | 180 | 120.2 | [ |
AL⁃KNPC⁃800 | 1 mol/L ZnSO4 | 0.1 | 360 F/g | 126.3 | [ |
OLDC⁃750 | 2 mol/L ZnSO4 | 0.1 | 306.8 F/g | 136.3 | [ |
DPCs⁃800 | 2 mol/L ZnSO4 | 0.2 | 140.0 | 111.1 | [ |
Nano MnO2 | 2 mol/L ZnSO4 | 0.1 | 54.1 | 58.6 | [ |
Bio⁃carbon | 1 mol/L Zn(CF3SO3)2 | 0.1 | 85.0 | 52.7 | [ |
MCHCNF⁃2 | 3 mol/L Zn(CF3SO3)2 | 0.1 | 191.4 | 133.1 | [ |
NPCN | 2 mol/L ZnSO4 | 0.25 | 106.0 | 101.0 | [ |
N⁃CN3 | 2 mol/L ZnSO4 | 0.2 | 157.6 | 126.5 | This work |
1 | Fu Q., Hao S. W., Zhang X. R., Zhao H. N., Xu F., Yang J., Energy Environ. Sci., 2023, 16(3), 1291―1311 |
2 | Xu J. L., Liu K. F., Khan M. A., Wang H., He T., Zhao H. B., Ye D. X., Tang Y., Zhang J. J., Chem. Eng. J., 2022, 443(1), 136637 |
3 | Samartzis N., Bhorkar K., Athanasiou M., Sygellou L., Dracopoulos V., Ioannides T., Yannopoulos S. N., Carbon, 2023, 201(5), 941―951 |
4 | Yu H. M., Li Q. Y., Liu W., Wang H., Ni X. Y., Zhao Q. W., Wei W. F., Ji X. B., Chen Y. J., Chen L. B., J. Energy Chem., 2022, 73, 565―574 |
5 | Liu X., Sun Y. J., Tong Y., Wang X. Y., Zheng J. F., Wu Y. J., Li H. Y., Niu L., Hou Y., Nano Energy, 2021, 86, 106070 |
6 | Catarineu N. R., Lin D., Zhu C., Oyarzun D. I., Li Y., Chem. Eng. J., 2023, 465(1), 142544 |
7 | Wang Y., Jiang W. K., Li J., Ahommed M. S., Wang C., Ji X. X., Liu Y., Yang G. H., Ni Y. H., Lyu G. J., Chem. Eng. J., 2023, 465(1), 142917 |
8 | Wu F. H., Zhao C. Y., Qu G. F., Liu S., Ren Y. C., Chen B. G., Li J. Y., Liu L. L., J. Environ. Chem. Eng., 2022, 10(2), 106685 |
9 | Xie D., Sang Y., Wang D. H., Diao W. Y., Tao F. Y., Liu C., Wang J. W., Sun H. Z., Zhang J. P., Wu X. L., Angew. Chem. Int. Ed., 2023, 62(7), e202216934 |
10 | Yang J. L., Liu H. H., Zhao X. X., Zhang X. Y., Zhang K. Y., Ma M. Y., Gu Z. Y., Cao J. M., Wu X. L., J. Am. Chem. Soc., 2024, 146(10), 6628―6637 |
11 | Li Y. M., Wang Z. W., Li W. H., Zhang X. Y., Yin C., Li K., Guo W., Zhang J. P., Wu X. L., Energy Storage Mater., 2023, 61, 102873 |
12 | Gao X., Wu H. Y., Su C., Lu C. M., Dai Y. H., Zhao S. Y., Hu X. Y., Zhao F. G., Zhang W., Parkin I. P., Carmalt C. J., He G. J., Energy Environ. Sci., 2023, 16(4), 1364―1383 |
13 | Hung P. Y., Zhang H. H., Lin H., Guo Q. S., Lau K. T., Jia B. H., J. Energy Chem., 2022, 68, 580―602 |
14 | Leng C. Y., Fedoseeva Y. V., Zhao Z. B., Yan B. X., Okotrub A. V., Wang X. Z., Fan J., Qiu J. S., J. Power Sources, 2022, 536(15), 231484 |
15 | Chen S., Ji D., Chen Q. W., Ma J. Z., Hou S. Q., Zhang J. T., Nat. Commun., 2023, 14(1), 3526 |
16 | Zhang H. Z., Liu Q. Y., Fang Y. B., Teng C. L, Liu X. Q., Fang P. P., Tong Y. X., Lu X. H., Adv. Mater., 2019, 31(44), 1904948 |
17 | Yao J. J., Li F. Z., Zhou R. Y., Guo C. C., Liu X. R., Zhu Y. R., Chin. Chem. Lett., 2024, 35(2), 108354 |
18 | Zhang W. L., Yin J., Jian W. B., Wu Y., Chen L. C, Sun M. L., Schwingenschlögl U., Qiu X. Q., Alshareef H. N., Nano Energy, 2022, 103(1), 107827 |
19 | Shang P., Liu M., Mei Y. Y., Liu Y. H., Wu L. S., Dong Y. F., Zhao Z. B., Qiu J. S., Small, 2022, 18(16), 2108057 |
20 | Zhu H. Y., Li Z. Y., Xu F., Qin Z. X, Sun R., Wang C. H., J. Colloid Interface Sci., 2022, 611, 718―725 |
21 | Zhao C. D., Guo J. Z., Gu Z. Y., Wang X. T., Zhao X. X., Li W. H., Yu H. Y., Wu X. L., Nano Res., 2022, 15, 925―932 |
22 | Li Z. Y., Peng Z. L., Sun R., Qin Z. X., Liu X. L., Wang C. H., Fan H. S., Lu S. J., Chin. J. Chem., 2021, 39(9), 2599―2606 |
23 | Li Y., Lu P. F., Shang P., Wu L. S., Wang X., Dong Y. F., He R. H., Wu Z. S., J. Energy Chem., 2021, 56, 404―411 |
24 | Yang L., He X. J., Wei Y. C., Bi H. H., Wei F., Li H. Q., Yuan C. Z., Qiu J. S., Nano Res., 2022, 15(5), 4068―4075 |
25 | Cui F. Z., Liu Z. C., Ma D. L., Liu L. L., Huang T., Zhang P. P., Tan D. M., Wang F. X., Jiang G. F., Wu Y. P., Chem. Eng. J., 2021, 405(1), 127038 |
26 | Qu X. X., Kang W. W., Lai C. W., Zhang C. X., Hong S. W., Molecules, 2022, 27(3), 27030791 |
27 | Gan X. R., Zhang C. R., Ye X. S., Qie L., Shi K. Y., Energy Storage Mater., 2024, 65, 103175 |
28 | Bai C. C., Zhang J. H., Chen R., Wu W. P., Li X. Y., Wang J. Q., Lu Y. H., Zhao Y., ACS Energy Lett., 2024, 9, 410―418 |
29 | Wei Y. C., Wu T. T., Yang L., Jin B. Y., Li H. Q., He X. J., Chem. J. Chinese Universities, 2021, 42(9), 2852―2860 |
魏雨晨, 武婷婷, 杨磊, 金碧玉, 李宏强, 何孝军. 高等学校化学学报, 2021, 42(9), 2852―2860 | |
30 | Zheng Z., Hu S. J., Yin W. J., Peng J., Wang R., Jun J., He B. B., Gong Y. S., Wang H. W., Fan H. J., Adv. Energy Mater., 2024, 14, 2303064 |
31 | He S. M., Mo Z. L., Shuai C., Liu W. T., Yue R. M., Liu G. G., Pei H. B., Chen Y., Liu N. J., Guo R. B., Appl. Surf. Sci., 2022, 577(1), 151904 |
32 | He H. N., He J., Yu H. B., Zeng L., Luo D., Zhang C. H., Adv. Energy Mater., 2023, 13, 2300357 |
33 | Lu Z. X., Wang J., Feng W. L., Yin X. P., Feng X. C., Zhao S. Y., Li C. X., Wang R. X., Huang Q. A., Zhao Y. F., Adv. Mater., 2023, 35, 2211461 |
34 | Du J., Chen A. B., Gao X. Q., Wu H. X., J. Ind. Eng. Chem., 2022, 109, 486―491 |
35 | Li X. P., Liang P., Zhang J. G., Liu B., Mater. Chem. Phys., 2022, 278(15), 125623 |
36 | Wang K. Y., Chen Y., Liu Y. B., Zhang H., Shen Y. X., Pu Z. Y., Qiu H. L., Li Y. M., J. Alloys Compd., 2022, 901(25), 163588 |
37 | Liu P. G., Gao Y., Tan Y. Y., Liu W. F., Huang Y. P., Yan J., Liu K. Y., Nano Res., 2019, 12(11), 2835―2841 |
38 | Zhou H.T., Liu C., Wu J. C., Liu M. H., Zhang D., Song H. L., Zhang X. Y., Gao H. Q., Yang J. H., Chen D., J. Mate. Chem. A, 2019, 7(16), 9708―9715 |
39 | Wang L., Peng M. K., Chen J. R., Tang X. N., Li L. B., Hu T., Yuan K., Chen Y. W., ACS Nano, 2022, 16(2), 2877―2888 |
40 | Zhao Y., Hao H. L., Song T. L., Wang X., Li C. W., Li W. Y., J. Power Sources, 2022, 521(15), 230941 |
41 | Wang L., Peng M. K., Chen J. R., Hu T., Yuan K., Chen Y. W., Adv. Mater., 2022, 34(39), 2203744 |
42 | Dong N., Zhang F. L, Pan H. L., Chem. Sci., 2022, 13, 8243―8252 |
43 | Yang B. Y., Zhao W. Q., Gao Z., Yang J. W., Shi W. H., Zhang Y. F., Su Q. M., Xu B. S., Du G. H., Carbon, 2024, 218(31), 118695 |
44 | Huang L. Q., Gu Z. L., He W. Q., Shi K. Y., Peng L. F., Sheng Z. Y., Zhang F., Feng W., Liu H. Y., Small, 2023, 20(14), 2308788 |
45 | Xue B. C., Liu C. Z, Wang X. F., Yi F., Xu J. H., Gong F., Xiao R., Chem. Eng. J., 2024, 480(15), 147994 |
46 | Li H. X., Su P. Y., Liao Q. X., Liu Y. D., Li Y. F., Niu X. H., Liu X. Y., Wang K. J., Small, 2023, 19(49), 2304172 |
47 | Liu L. T., Sun Z. Y., Lu Y. P., Zhang J. P., Li Y. M., Zhang G. X., Chen X. H., Omanovic S., Sun S. H., Song H. H., J. Mater. Chem. A, 2023, 11, 14311―14319 |
48 | Ma X. P., Cheng J. Y., Dong L. B., Liu W. B., Mou J., Zhao L., Wang J. J., Ren D. Y., Wu J. L., Xu C. J., Kang F. Y., Energy Storage Mater., 2019, 20, 335―342 |
49 | Wang H., Wang M., Tang Y. B., Energy Storage Mater., 2018, 13, 1―7 |
50 | Zhang Y. F., Zhu C. L., Xiong Y., Gao Z. Y., Hu W., Shi J., Chen J. W., Tian W. Q., Wu J. Y., Huang M. H., Wang H. L., Small Methods, 2023, 7, 2300714 |
51 | Liu P. G., Fan X. W., Ouyang B. X., Huang Y. P., Hao R., Gao S. S., Liu W. F., Liu K. Y., J. Power Sources, 2022, 518(15), 230740 |
52 | Jia D. D., Zheng K., Song M., Tan H., Zhang A. T., Wang L. H., Yue L. J., Li D., Li C. W., Liu J. Q., Nano Res., 2020, 13(1), 215―224 |
53 | Bi H. H., He X. J., Yang L., Li H. Q., Jin B. Y., Qiu J. S., J. Energy Chem., 2022, 66, 195―204 |
54 | Zheng Y. W., Zhao W., Jia D. D., Liu Y., Cui L., Wei D., Zheng R. K., Liu J. Q., Chem. Eng. J., 2020, 387(1), 124161 |
55 | Yang L., He X. J., Wei Y. C., Li H. Q., Yu Y., Qiu J. S., J. Power Sources, 2022, 542(15), 231743 |
56 | Han L., Huang H. L., Li J. F., Yang Z. L., Zhang X. L., Zhang D. F., Liu X. J., Xu M., Pan L. K., J. Mater. Chem. A, 2019, 7(42), 24400―24407 |
57 | Chauhan A., Singh K. M., Digit. Signal Process., 2022, 127, 103560 |
58 | Xu J., Wei Y. C., Yang W., Yang L. L., Yi Z. S., Analyst, 2018, 143(19), 4662―4673 |
[1] | CHEN Xin, LIU Jingyuan, YU Jing. Preparation of Porous Carbon Nanofiber Loaded Copper-platinum Alloy Catalysts and Their Electrocatalytic Hydrogen Evolution Performance [J]. Chem. J. Chinese Universities, 2024, 45(6): 20240042. |
[2] | YU Moxin, SHI Wenxu, SUN Yuhang, ZHANG Chen, WANG Xiaoting. Preparation of P-doped Coal Pitch-based Porous Carbon and Its Adsorption Performance for Broad-spectrum Antibiotics in Wastewater [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230481. |
[3] | SUI Guanghui, CHENG Yanyan. Lanthanum-supported Porous Carbon Composite Electrode Material Prepared by Rice Husk Char [J]. Chem. J. Chinese Universities, 2024, 45(4): 20240012. |
[4] | WANG Fang, HAO Jianwei. Thermal Stability and Mechanical Properties of the Composite of Epoxy Resin with Ammonium Polyphosphate/Ceramic Precursor Modified Bamboo-based Porous Carbon as Synergistic Flame Retardant [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230030. |
[5] | FU Zhongheng, CHEN Xiang, YAO Nan, YU Legeng, SHEN Xin, ZHANG Rui, ZHANG Qiang. Research Advances in Transport Mechanism of Lithium Ions in Solid Electrolytes [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220703. |
[6] | LIU Junhui, LI Zijia, WU Shuchang, XIE Zailai, CHEN Yiquan. Synthesis of Biochar Derived from Jujun Grass and the Application in Supercapacitors [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220653. |
[7] | HAO Honglei, MENG Fanyu, LI Ruoyu, LI Yingqiu, JIA Mingjun, ZHANG Wenxiang, YUAN Xiaoling. Biomass Derived Nitrogen Doped Porous Carbon Materials as Adsorbents for Removal of Methylene Blue in Water [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220055. |
[8] | LUO Bian, ZHOU Fen, PAN Mu. Study on Preparation and Accessibility of Hierarchical Porous Carbon Supported Platinum Catalyst [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210853. |
[9] | FANG Jiyong, JIANG Zhenhua, YUE Xigui. Preparation and Properties of Polyaryletherketones-based Electromagnetic Wave Absorption Composite Material [J]. Chem. J. Chinese Universities, 2021, 42(6): 1994. |
[10] | WANG Changyao, WANG Shuai, DUAN Linlin, ZHU Xiaohang, ZHANG Xingmiao, LI Wei. In situ Confinement Growth Strategy for Ordered Mesoporous Carbon Support Ultrasmall MoO3 Nanoparticles [J]. Chem. J. Chinese Universities, 2021, 42(5): 1589. |
[11] | LI Bowen,WANG Ruoheng,LI Li,XIAO Yang. Adsorption of Toluene by Alkali Activated Porous Carbons and Activation/Adsorption Mechanism † [J]. Chem. J. Chinese Universities, 2020, 41(2): 284. |
[12] | YU Jianxing, YU Moxin, KUAI Le, ZHU Bowen. Preparation of High Oxygen Porous Carbon from Walnut Peel and Its Adsorption Properties for Ni2+ [J]. Chem. J. Chinese Universities, 2020, 41(11): 2464. |
[13] | LI Ze, WANG Jianjiang, GAO Haitao, ZHAO Fang. Fabrication and Microwave Absorption Mechanism of PCIP/CoFe2O4/PANI Composites [J]. Chem. J. Chinese Universities, 2019, 40(8): 1784. |
[14] | WEI Junyi, GAO Zhihua, HUANG Wei, AI Peipei, YAN Feifei, YOU Xiangxuan. Effect of Structural Ordering on the Performance of Mesoporous Carbon Supported CuCoCe Catalyst in the Synthesis of Higher Alcohols from Syngas† [J]. Chem. J. Chinese Universities, 2018, 39(8): 1741. |
[15] | WANG Xiuli, HE Xingquan. Electrocatalytic Performance of Fe9S10 Nanoparticles Loaded Nitrogen and Sulphur Codoped Porous Carbon for Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1524. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||