Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (9): 20230164.doi: 10.7503/cjcu20230164
• Article • Previous Articles Next Articles
ZHANG Liting1,3, QIU Dingding1,3, ZHANG Jianqi1,2,3, LYU Kun1,2,3(), WEI Zhixiang1,2,3(
)
Received:
2023-04-01
Online:
2023-09-10
Published:
2023-05-08
Contact:
LYU Kun
E-mail:lvk@nanoctr.cn;weizx@nanoctr.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Liting, QIU Dingding, ZHANG Jianqi, LYU Kun, WEI Zhixiang. Z-configuration A-DA'D-A Type Acceptor with Thermal Annealing Induced High Open Circuit Voltage[J]. Chem. J. Chinese Universities, 2023, 44(9): 20230164.
Device | tA/°C | Voc/V a | Jsc/(mA·cm-2) | Jscb /(mA·cm-2) | FF(%) | PCE(%) |
---|---|---|---|---|---|---|
D18∶Y6 | As⁃cast | 0.843(0.839±0.003) | 25.56(25.23±0.31) a | 24.96 | 79.15(78.95±0.12) b | 17.06(16.70±0.32) a |
80 | 0.836(0.832±0.002) | 25.62(25.41±0.17) | 25.25 | 78.29(77.89±0.29) | 16.78(16.47±0.24) | |
100 | 0.832(0.829±0.001) | 26.10(25.82±0.16) | 25.40 | 77.35(77.11±0.19) | 16.80(16.52±0.15) | |
110 | 0.824(0.822±0.001) | 26.57(26.25±0.18) | 25.60 | 75.94(75.64±0.34) | 16.62(16.33±0.32) | |
D18∶ZNT | As⁃cast | 0.950(0.947±0.008) | 13.31(13.14±0.20) | 12.71 | 53.34(52.85±0.43) | 6.75(6.56±0.17) |
80 | 0.963(0.960±0.003) | 13.88(13.74±0.07) | 13.80 | 56.21(55.93±0.19) | 7.51(7.37±0.10) | |
100 | 0.993(0.989±0.004) | 11.63(11.52±0.08) | 11.31 | 54.18(53.88±0.36) | 6.32(6.15±0.11) | |
110 | 0.995(0.993±0.002) | 10.70(10.46±0.19) | 10.65 | 54.51(54.38±0.07) | 5.81(5.63±0.14) |
Table 1 Photovoltaic performance of the devices under different annealing temperatures(tA)
Device | tA/°C | Voc/V a | Jsc/(mA·cm-2) | Jscb /(mA·cm-2) | FF(%) | PCE(%) |
---|---|---|---|---|---|---|
D18∶Y6 | As⁃cast | 0.843(0.839±0.003) | 25.56(25.23±0.31) a | 24.96 | 79.15(78.95±0.12) b | 17.06(16.70±0.32) a |
80 | 0.836(0.832±0.002) | 25.62(25.41±0.17) | 25.25 | 78.29(77.89±0.29) | 16.78(16.47±0.24) | |
100 | 0.832(0.829±0.001) | 26.10(25.82±0.16) | 25.40 | 77.35(77.11±0.19) | 16.80(16.52±0.15) | |
110 | 0.824(0.822±0.001) | 26.57(26.25±0.18) | 25.60 | 75.94(75.64±0.34) | 16.62(16.33±0.32) | |
D18∶ZNT | As⁃cast | 0.950(0.947±0.008) | 13.31(13.14±0.20) | 12.71 | 53.34(52.85±0.43) | 6.75(6.56±0.17) |
80 | 0.963(0.960±0.003) | 13.88(13.74±0.07) | 13.80 | 56.21(55.93±0.19) | 7.51(7.37±0.10) | |
100 | 0.993(0.989±0.004) | 11.63(11.52±0.08) | 11.31 | 54.18(53.88±0.36) | 6.32(6.15±0.11) | |
110 | 0.995(0.993±0.002) | 10.70(10.46±0.19) | 10.65 | 54.51(54.38±0.07) | 5.81(5.63±0.14) |
Fig.6 J⁃V curves(A, D), EQE curves(B, E) and dependence of Jph on Veff(C, F) of the D18∶Y6(A—C) and D18∶ZNT(D—F) devices under different annealing temperatures
Fig.7 Jsc(A) and Voc(B) dependence on light intensity, hole mobilities(C) and electron mobilities(D) curves of D18∶ZNT⁃based devices under different annealing temperatures
Device | tA/℃ | VOC/V | Eloss(Eg-qVOC) | q | ΔE1/eV | ΔE2/eV | ΔE3/eV | ΔE/eV | |||
---|---|---|---|---|---|---|---|---|---|---|---|
D18∶Y6 | As⁃cast | 0.843 | 1.385 | 0.542 | 1.125 | 1.068 | 0.260 | 0.057 | 0.222 | 0.539 | 0.846 |
80 | 0.836 | 1.385 | 0.549 | 1.125 | 1.065 | 0.260 | 0.060 | 0.227 | 0.547 | 0.838 | |
100 | 0.832 | 1.385 | 0.551 | 1.125 | 1.063 | 0.260 | 0.060 | 0.230 | 0.550 | 0.833 | |
110 | 0.824 | 1.385 | 0.561 | 1.125 | 1.061 | 0.260 | 0.062 | 0.231 | 0.553 | 0.830 | |
D18∶ZNT | As⁃cast | 0.950 | 1.526 | 0.576 | 1.257 | 1.194 | 0.269 | 0.063 | 0.242 | 0.574 | 0.952 |
80 | 0.963 | 1.524 | 0.561 | 1.255 | 1.188 | 0.269 | 0.068 | 0.226 | 0.563 | 0.962 | |
100 | 0.993 | 1.525 | 0.532 | 1.255 | 1.205 | 0.269 | 0.050 | 0.211 | 0.530 | 0.994 | |
110 | 0.995 | 1.526 | 0.531 | 1.257 | 1.197 | 0.269 | 0.060 | 0.203 | 0.532 | 0.994 |
Table 2 Energy loss of the devices under different annealing temperatures
Device | tA/℃ | VOC/V | Eloss(Eg-qVOC) | q | ΔE1/eV | ΔE2/eV | ΔE3/eV | ΔE/eV | |||
---|---|---|---|---|---|---|---|---|---|---|---|
D18∶Y6 | As⁃cast | 0.843 | 1.385 | 0.542 | 1.125 | 1.068 | 0.260 | 0.057 | 0.222 | 0.539 | 0.846 |
80 | 0.836 | 1.385 | 0.549 | 1.125 | 1.065 | 0.260 | 0.060 | 0.227 | 0.547 | 0.838 | |
100 | 0.832 | 1.385 | 0.551 | 1.125 | 1.063 | 0.260 | 0.060 | 0.230 | 0.550 | 0.833 | |
110 | 0.824 | 1.385 | 0.561 | 1.125 | 1.061 | 0.260 | 0.062 | 0.231 | 0.553 | 0.830 | |
D18∶ZNT | As⁃cast | 0.950 | 1.526 | 0.576 | 1.257 | 1.194 | 0.269 | 0.063 | 0.242 | 0.574 | 0.952 |
80 | 0.963 | 1.524 | 0.561 | 1.255 | 1.188 | 0.269 | 0.068 | 0.226 | 0.563 | 0.962 | |
100 | 0.993 | 1.525 | 0.532 | 1.255 | 1.205 | 0.269 | 0.050 | 0.211 | 0.530 | 0.994 | |
110 | 0.995 | 1.526 | 0.531 | 1.257 | 1.197 | 0.269 | 0.060 | 0.203 | 0.532 | 0.994 |
Fig.9 AFM height images of the D18∶ZNT under different annealing temperatures(A—D), 2D GIWAXS patterns of D18∶ZNT, D18∶Y6 and pure film of ZNT under different annealing temperatures(E—P) and the corresponding 1D line⁃cut profiles of the D18∶Y6 and D18∶ZNT devices under different annealing temperatures(Q)(A, E, I, M) As⁃cast; (B, F, J, N) 80 ℃; (C, G, K, O) 100 ℃; (D, H, L, P) 110 ℃.
1 | Guo J., Min J., Adv. Energy Mater., 2019, 9(3), 1802521 |
2 | Sun C. K., Pan F., Chen S. S., Wang R., Sun R., Shang Z. Y., Qiu B. B., Min J., Lv M. L., Meng L., Zhang C. F., Xiao M., Yang C., Li Y. F., Adv. Mater., 2019, 31(52), 1905480 |
3 | Song W., Yu K. B., Zhou E. J., Xie L., Hong L., Ge J. F., Zhang J. S., Zhang X. L., Peng R. X., Ge Z. Y., Adv. Funct. Mater., 2021, 31(30), 2102694 |
4 | Song W., Liu Y. X., Fanady B., Han Y. F., Xie L., Chen Z. Y., Yu K. B., Peng X., Zhang X. L., Ge Z. Y., Nano Energy, 2021, 86, 106044 |
5 | Xie L., Zhang J. S., Song W., Ge J. F., Li D. D., Zhou R., Zhang J. Q., Zhang X. L., Yang D. B., Tang B. C., Wu T., Ge Z. Y., Nano Energy, 2022, 99, 107414 |
6 | Xie L., Song W., Ge J. F., Tang B. C., Zhang X. L., Wu T., Ge Z. Y., Nano Energy, 2021, 82, 105770 |
7 | Zhang Z. H., Guang S., Yu J. S., Wang H. T., Cao J. R., Du F. Q., Wang X. L., Tang W. H., Sci. Bull., 2020, 65(18), 1533—1536 |
8 | Deng M., Xu X. P., Duan Y. W., Yu L. Y., Li R. P., Peng Q., Adv. Mater., 2023, 35(10), 2210760 |
9 | Fu J. H., Fong P. W. K., Liu H., Huang C. S., Lu X. H., Lu S. R., Abdelsamie M., Kodalle T., Sutter⁃Fella C. M., Yang Y., Li G., Nat. Commun., 2023, 14(1), 1760 |
10 | Wadsworth A., Moser M., Marks A., Little M. S., Gasparini N., Brabec C. J., Baran D., McCulloch I., Chem. Soc. Rev., 2019, 48(6), 1596—1625 |
11 | Lin Y. Z., Zhang Z. G., Bai H. T., Wang J. Y., Yao Y. H., Li Y. F., Zhu D. B., Zhan X. W., Energy Environ. Sci., 2015, 8(2), 610—616 |
12 | Lin Y. Z., Wang J. Y., Zhang Z. G., Bai H. T., Li Y. F., Zhu D. B., Zhan X. W., Adv. Mater., 2015, 27(7), 1170—1174 |
13 | Zhao W. C., Li S. S., Yao H. F., Zhang S. Q., Zhang Y., Yang B., Hou J. H., J. Am. Chem. Soc., 2017, 139(21), 7148—7151 |
14 | Zhang S. Q., Qin Y. P., Zhu J., Hou J. H., Adv. Mater., 2018, 30(20), 1800868 |
15 | Feng L. L., Yuan J., Zhang Z. Z., Peng H. J., Zhang Z. G., Xu S. T., Liu Y., Li Y. F., Zou Y. P., ACS Appl. Mater. Interfaces, 2017, 9(37), 31985—31992 |
16 | Yuan J., Huang T. Y., Cheng P., Zou Y. P., Zhang H. T., Yang J. L., Chang S. Y., Zhang Z. Z., Huang W. C., Wang R., Meng D., Gao F., Yang Y., Nat. Commun., 2019, 10(1), 570 |
17 | Yuan J., Zhang Y. Q., Zhou L. Y., Zhang G. C., Yip H. L., Lau T. K., Lu X. H., Zhu C., Peng H. J., Johnson P. A., Leclerc M., Cao Y., Ulanski J., Li Y. F., Zou Y. P., Joule, 2019, 3(4), 1140—1151 |
18 | Zhu C., Yuan J., Cai F. F., Meng L., Zhang H. T., Chen H. G., Li J., Qiu B. B., Peng H. J., Chen S. S., Hu Y. B., Yang C., Gao F., Zou Y. P., Li Y. F., Energy Environ. Sci., 2020, 13(8), 2459—2466 |
19 | Yu Z. P., Li X., He C. L., Wang D., Qin R., Zhou G. Q., Liu Z. X., Andersen T. R., Zhu H. M., Chen H. Z., Li C. Z., Chin. Chem. Lett., 2020, 31(7), 1991—1996 |
20 | Guo Y., Han G. C., Yi Y. P., Angew. Chem. Int. Ed., 2022, 61(30), e202205975 |
21 | Yao J. Z., Kirchartz T., Vezie M. S., Faist M. A., Gong W., He Z. C., Wu H. B., Troughton J., Watson T., Bryant D., Nelson J., Physi. Rev. Appl., 2015, 4(1), 014020 |
22 | Zhang Z. Q., Wu Q., Deng D., Wu S. H., Sun R., Min J., Zhang J. Q., Wei Z. X., J. Mater. Chem. C, 2020, 8(43), 15385—15392 |
23 | Menke S. M., Sadhanala A., Nikolka M., Ran N. A., Ravva M. K., Abdel⁃Azeim S., Stern H. L., Wang M., Sirringhaus H., Nguyen T. Q., Brédas J. L., Bazan G. C., Friend R. H., ACS Nano, 2016, 10(12), 10736—10744 |
24 | Shi Y. N., Chang Y. L., Lu K., Chen Z. H., Zhang J. Q., Yan Y. J., Qiu D. D., Liu Y. N., Adil M. A., Ma W., Hao X. T., Zhu L. Y., Wei Z. X., Nat. Commun., 2022, 13(1), 3256 |
25 | Elumalai N. K., Uddin A., Energy Environ. Sci., 2016, 9(2), 391—410 |
26 | Wang M., Hu X. W., Liu P., Li W., Gong X., Huang F., Cao Y., J. Am. Chem. Soc., 2011, 133(25), 9638—9641 |
27 | Li W., Li Q. D., Liu S. J., Duan C. H., Ying L., Huang F., Cao Y., Sci. China Chem., 2015, 58(2), 257—266 |
28 | Liu Q. S., Jiang Y. F., Jin K., Qin J. Q., Xu J. G., Li W. T., Xiong J., Liu J. F., Xiao Z., Sun K., Yang S. F., Zhang X. T., Ding L. M., Sci. Bull., 2020, 65(4), 272—275 |
29 | Bai H. R., An Q. S., Zhi H. F., Jiang M. Y., Mahmood A., Yan L., Liu M. Q., Liu Y. Q., Wang Y., Wang J. L., ACS Energy Lett., 2022, 7(9), 3045—3057 |
30 | Tirado⁃Rives J., Jorgensen W. L., J. Chem. Theory Comput., 2008, 4(2), 297—306 |
31 | Wang J. W., Ma L. J., Lee Y. W., Yao H. F., Xu Y., Zhang S. Q., Woo H. Y., Hou J. H., Chem. Commun., 2021, 57(72), 9132—9135 |
32 | Sun Q. J., Wang H. Q., Yang C. H., Li Y. F., J. Mater. Chem., 2003, 13(4), 800—806 |
33 | Wang T., Sun R., Wu Y., Wang W., Zhang M. M., Min J., Chem. Mater., 2022, 34(22), 9970—9981 |
34 | Li Z. C., Kong X. L., Chen Z., Angunawela I., Zhu H. M., Li X. J., Meng L., Ade H., Li Y., ACS Appl. Mater. Interfaces, 2022, 14(46), 52058—52066 |
35 | Zhang L. L., Zhang Z. Q., Deng D., Zhou H. Q., Zhang J. Q., Wei Z. X., Adv. Sci., 2022, 9(23), 2202513 |
36 | Li S. X., Zhan L. T., Jin Y. Z., Zhou G. Q., Lau T. K., Qin R., Shi M. M., Li C. Z., Zhu H. M., Lu X., Zhang F. L., Chen H. Z., Adv. Mater., 2020, 32(24), 2001160 |
37 | Chang Y. L., Zhu X. W., Shi Y. N., Liu Y. N., Meng K., Li Y. X., Xue J. W., Zhu L. Y., Zhang J. Q., Zhou H. Q., Ma W., Wei Z. X., Lu K., Energy Environ. Sci., 2022, 15(7), 2937—2947 |
38 | Liu W. Y., Sun S. M., Xu S. J., Zhang H., Zheng Y. Q., Wei Z. X., Zhu X. Z., Adv. Mater., 2022, 34(18), 2200337 |
[1] | WANG Jiacheng, CAI Guilong, ZHANG Yajing, WANG Jiayu, LU Xinhui, ZHAN Xiaowei, CHEN Xingguo. Simple Modulation of Side-chains of Near-infrared Absorbing Non-fullerene Acceptor for Higher Short-circuit Current Density [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230163. |
[2] | SHI Shiling, JIANG Hanxi, TU Xueyang, XIAN Kaihu, HAN Dexia, LI Yanru, YAO Xiang, YE Long, FEI Zhuping. Synthesis and Photovoltaic Properties of Non-fullerene Acceptors Based on Aryl-substituted Imide End Groups [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230182. |
[3] | SONG Xin, GAO Shenzheng, XU Shanlei, XU Hao, ZHOU Xinjie, ZHU Mengbing, HAO Rulin, ZHU Weiguo. Progress on the Efficiency Regulation of Organic Solar Cells by Volatile Solid Additives [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230151. |
[4] | ZHANG Yi, SHAN Tong, WANG Yan, ZHONG Hongliang. Non-fullerene Acceptors with Germanium as Bridge Atom and Their Applications in Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230050. |
[5] | SI Wenqin, LI Tengfei, LIN Yuze. Asymmetric Fused-ring Photovoltaic Electron Acceptors [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230149. |
[6] | GUO Yuntong, CHEN Zhenyu, GE Ziyi. Effects of Different Halogenated End-groups Non-fullerene Acceptors on the Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230084. |
[7] | SONG Meining, HAO Haijing, CHEN Weiping, GU Fang, BA Xinwu. Synthesis, Characterization and Photovoltaic Properties of Truxene Based Star-Shaped Non-Fullerene Acceptors† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1527. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||