Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (9): 20230163.doi: 10.7503/cjcu20230163
• Article • Previous Articles Next Articles
WANG Jiacheng1, CAI Guilong3, ZHANG Yajing1, WANG Jiayu2, LU Xinhui3, ZHAN Xiaowei2(), CHEN Xingguo1(
)
Received:
2023-04-01
Online:
2023-09-10
Published:
2023-06-05
Contact:
CHEN Xingguo
E-mail:xwzhan@pku.edu.cn;xgchen@whu.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Jiacheng, CAI Guilong, ZHANG Yajing, WANG Jiayu, LU Xinhui, ZHAN Xiaowei, CHEN Xingguo. Simple Modulation of Side-chains of Near-infrared Absorbing Non-fullerene Acceptor for Higher Short-circuit Current Density[J]. Chem. J. Chinese Universities, 2023, 44(9): 20230163.
Fig.2 Normalized UV⁃Vis absorption spectra of acceptors in CF solution(A), acceptors and donor material PTB7⁃Th in thin film(B), CV curves of acceptors in CH3CN/0.1 mol/L Bu4NPF6 at 100 mV/s(C) and the inverted device fabrication structure(D)
Acceptor | λmax(solution)/nm | εmax/(L∙mol–1∙cm-1) | λmax(film)/nm | ELUMO/eV | ||
---|---|---|---|---|---|---|
A2 | 708 | 0.85×105 | 771 | 908 | 1.37 | -3.81 |
JC1 | 723 | 0.88×105 | 828 | 954 | 1.30 | -3.95 |
JC11 | 723 | 1.14×105 | 831 | 934 | 1.33 | -3.89 |
Table 1 Optical and electrochemical properties of JC1 and JC2
Acceptor | λmax(solution)/nm | εmax/(L∙mol–1∙cm-1) | λmax(film)/nm | ELUMO/eV | ||
---|---|---|---|---|---|---|
A2 | 708 | 0.85×105 | 771 | 908 | 1.37 | -3.81 |
JC1 | 723 | 0.88×105 | 828 | 954 | 1.30 | -3.95 |
JC11 | 723 | 1.14×105 | 831 | 934 | 1.33 | -3.89 |
Acceptor | Additive a | V | J | FF b (%) | PCE(%) b | Calculated JSC/(mA∙cm-2) |
---|---|---|---|---|---|---|
A2 | None | 0.722(0.719±0.002) | 15.85(15.46±0.31) | 61.3(61.1±0.5) | 7.02(6.80±0.11) | 15.57 |
1% DIO | 0.701(0.703±0.002) | 19.47(18.90±0.50) | 60.1(60.2±0.9) | 8.20(8.00±0.22) | 19.21 | |
JC1 | None | 0.662(0.665±0.004) | 15.48(15.39±0.25) | 62.7(61.2±1.2) | 6.42(6.26±0.10) | 14.82 |
0.75% CN | 0.656(0.657±0.002) | 19.12(18.96±0.40) | 65.0(64.9±0.9) | 8.16(8.08±0.07) | 18.83 | |
JC11 | None | 0.688(0.689±0.007) | 19.71(19.52±0.30) | 55.5(54.5±0.9) | 7.53(7.32±0.10) | 19.59 |
0.25% DIO | 0.674(0.676±0.003) | 24.20(23.18±0.48) | 61.9(63.3±0.9) | 10.09(9.92±0.09) | 23.36 |
Table 2 Photovoltaic performance of the devices based on the PTB7-Th:acceptor under the illumination of AM 1.5G, 100 mW/cm2
Acceptor | Additive a | V | J | FF b (%) | PCE(%) b | Calculated JSC/(mA∙cm-2) |
---|---|---|---|---|---|---|
A2 | None | 0.722(0.719±0.002) | 15.85(15.46±0.31) | 61.3(61.1±0.5) | 7.02(6.80±0.11) | 15.57 |
1% DIO | 0.701(0.703±0.002) | 19.47(18.90±0.50) | 60.1(60.2±0.9) | 8.20(8.00±0.22) | 19.21 | |
JC1 | None | 0.662(0.665±0.004) | 15.48(15.39±0.25) | 62.7(61.2±1.2) | 6.42(6.26±0.10) | 14.82 |
0.75% CN | 0.656(0.657±0.002) | 19.12(18.96±0.40) | 65.0(64.9±0.9) | 8.16(8.08±0.07) | 18.83 | |
JC11 | None | 0.688(0.689±0.007) | 19.71(19.52±0.30) | 55.5(54.5±0.9) | 7.53(7.32±0.10) | 19.59 |
0.25% DIO | 0.674(0.676±0.003) | 24.20(23.18±0.48) | 61.9(63.3±0.9) | 10.09(9.92±0.09) | 23.36 |
Fig.5 2D GIWAXS patterns of PTB7⁃Th∶A2(A), PTB7⁃Th∶JC1(B) and PTB7⁃Th∶JC11(C) optimized films and the corresponding intensity profiles along the in⁃plane and out⁃of⁃plane directions(D)
1 | Li G., Zhu R., Yang Y., Nat. Photonics, 2012, 6, 153—161 |
2 | Lu L., Zheng T., Wu Q., Schneider A. M., Zhao D., Yu L., Chem. Rev., 2015, 115, 12666—12731 |
3 | Lin Y., Zhan X., Acc. Chem. Res., 2016, 49, 175—183 |
4 | Lin Y., Wang J., Zhang Z. G., Bai H., Li Y., Zhu D., Zhan X., Adv. Mater., 2015, 27, 1170—1174 |
5 | Dai S., Zhao F., Zhang Q., Lau T. K., Li T., Liu K., Ling Q., Wang C., Lu X., You W., Zhan X., J. Am. Chem. Soc., 2017, 139, 1336—1343 |
6 | Li Y., Acc. Chem. Res., 2012, 45, 723—733 |
7 | Wang J., Xue P., Jiang Y., Huo Y., Zhan X., Nature Rev. Chem., 2022, 6, 614—634 |
8 | Xue P., Cheng P., Han R. P. S., Zhan X., Mater. Horiz., 2022, 9, 194—219 |
9 | Yan C., Barlow S., Wang Z., Yan H., Jen A. K. Y., Marder S. R., Zhan X., Nat. Rev. Mater., 2018, 3, 18003 |
10 | Cheng P., Li G., Zhan X., Yang Y., Nat. Photonics, 2018, 12, 131—142 |
11 | Zhang G., Lin F. R., Qi F., Heumüller T., Distler A., Egelhaaf H.-J., Li N., Chow P. C. Y., Brabec C. J., Jen A. K. Y., Yip H. L., Chem. Rev., 2022, 122, 14180—14274 |
12 | Jia B., Zhan X., Sci. China Chem., 2020, 63, 1179—1181 |
13 | Liu Y., Zhao J., Li Z., Mu C., Ma W., Hu H., Jiang K., Lin H., Ade H., Yan H., Nat. Commun., 2014, 5, 5293 |
14 | Zhao J., Li Y., Yang G., Jiang K., Lin H., Ade H., Ma W., Yan H., Nat. Energy, 2016, 1, 15027 |
15 | Vohra V., Kawashima K., Kakara T., Koganezawa T., Osaka I., Takimiya K., Murata H., Nat. Photonics, 2015, 9, 403—408 |
16 | Wan Q., Guo X., Wang Z., Li W., Guo B., Ma W., Zhang M., Li Y., Adv. Funct. Mater., 2016, 26, 6635—6640 |
17 | Zhang S., Ye L., Zhao W., Yang B., Wang Q., Hou J., Sci. China Chem., 2015, 58, 248—256 |
18 | Deng D., Zhang Y., Zhang J., Wang Z., Zhu L., Fang J., Xia B., Wang Z., Lu K., Ma W., Wei Z., Nat. Commun., 2016, 7, 13740 |
19 | Ross R. B., Cardona C. M., Guldi D. M., Sankaranarayanan S. G., Reese M. O., Kopidakis N., Peet J., Walker B., Bazan G. C., van Keuren E., Holloway B. C., Drees M., Nat. Mater., 2009, 8, 208—212 |
20 | Zhu J., Ke Z., Zhang Q., Wang J., Dai S., Wu Y., Xu Y., Lin Y., Ma W., You W., Zhan X., Adv. Mater., 2018, 30, 1704713 |
21 | Wang W., Yan C., Lau T. K., Wang J., Liu K., Fan Y., Lu X., Zhan X., Adv. Mater., 2017, 29, 1701308 |
22 | Lin Y., He Q., Zhao F., Huo L., Mai J., Lu X., Su C. J., Li T., Wang J., Zhu J., Sun Y., Wang C., Zhan X., J. Am. Chem. Soc., 2016, 138, 2973—2976 |
23 | Wang J., Zhan X., Acc. Chem. Res., 2021, 54, 132—143 |
24 | Meng L., Zhang Y., Wan X., Li C., Zhang X., Wang Y., Ke X., Xiao Z., Ding L., Xia R., Yip H. L., Cao Y., Chen Y., Science, 2018, 361, 1094—1098 |
25 | Zhang G., Zhang K., Yin Q., Jiang X., Wang Z., Xin J., Ma W., Yan H., Huang F., Cao Y., J. Am. Chem. Soc., 2017, 139, 2387—2395 |
26 | Luo Z., Bin H., Liu T., Zhang Z.-G., Yang Y., Zhong C., Qiu B., Li G., Gao W., Xie D., Wu K., Sun Y., Liu F., Li Y., Yang C., Adv. Mater., 2018, 30, 1706124 |
27 | Shi X., Zuo L., Jo S. B., Gao K., Lin F., Liu F., Jen A. K. Y., Chem. Mater., 2017, 29, 8369—8376 |
28 | Wang Y., Price M. B., Bobba R. S., Lu H., Xue J., Wang Y., Li M., Ilina A., Hume P. A., Jia B., Li T., Zhang Y., Davis N. J. L. K., Tang Z., Ma W., Qiao Q., Hodgkiss J. M., Zhan X., Adv. Mater., 2022, 34, 2206717 |
29 | Xu X., Li Z., Zhang W., Meng X., Zou X., Rasi D. D. C., Ma W., Yartsev A., Andersson M. R., Janssen R. A. J., Wang E., Adv. Energy Mater., 2018, 8, 1700908 |
30 | Wang J., Wang W., Wang X., Wu Y., Zhang Q., Yan C., Ma W., You W., Zhan X., Adv. Mater., 2017, 29, 1702125 |
31 | Li T., Dai S., Ke Z., Yang L., Wang J., Yan C., Ma W., Zhan X., Adv. Mater., 2018, 30, 1705969 |
32 | Chandrabose S., Chen K., Barker A. J., Sutton J. J., Prasad S. K. K., Zhu J., Zhou J., Gordon K. C., Xie Z., Zhan X., Hodgkiss J. M., J. Am. Chem. Soc., 2019, 141, 6922—6929 |
33 | Dai S., Li T., Wang W., Xiao Y., Lau T., Li Z., Liu K., Lu X., Zhan X., Adv. Mater., 2018, 30, 1706571 |
34 | Bi P., Wang J., Cui Y., Zhang J., Zhang T., Chen Z., Qiao J., Dai J., Zhang S., Hao X., Wei Z., Hou J., Adv. Mater., 2023, 35, 2210865 |
35 | Yuan J., Zhang Y., Zhou L., Zhang G.,Yip H., Lau T., Lu X., Zhu C., Peng H., Johnson P., Leclerc M., Cao Y., Ulanski J., Li Y., Zou Y., Joule, 2019, 3, 1140—1151 |
36 | Ou Z., Qin J., Jin K., Zhang J., Zhang L., Yi C., Jin Z., Song Q., Sun K., Yang J., Xiao Z., Ding L., J. Mater. Chem. A, 2022, 10, 3314—3320 |
37 | Sun R., Wu Y., Yang X., Gao Y., Chen Z., Li K., Qiao J., Wang., Guo J., Liu C., Hao X., Zhu H., Min J., Adv. Mater., 2022, 34, 2110147 |
38 | Chen T., Li S., Li Y., Chen Z., Wu H., Lin Y., Gao Y., Wang M., Ding G., Min J., Ma Z., Zhu H., Zuo L., Chen H., Adv. Mater., 2023, 35, 202300400 |
39 | Li S., Zhang R., Zhang M., Yao J., Peng Z., Chen Q., Zhang C., Chang B., Bai Y., Fu H., Ouyang Y., Zhang C., Steele J. A., Alshahrani T., Roeffaers M. B.J., Solano E., Meng L., Gao F., Li Y., Zhang Z. G., Adv. Mater., 2023, 35, 2206563 |
40 | Cai Y., Xie C., Li Q., Liu C., Gao J., Jee M. H., Qiao J., Li Y., Song J., Hao X., Woo H. Y., Tang Z., Zhou Y., Zhang C., Huang H., Sun Y., Adv. Mater., 2023, 35, 2208165 |
41 | Yang X., Sun R., Wang Y., Chen M., Xia X., Lu X., Lu G., Min J., Adv. Mater., 2023, 35, 2209350 |
42 | Chen H., Zhang Z., Wang P., Zhang Y., Ma K., Lin Y., Duan T., He T., Ma Z., Long G., Li C., Kan B., Yao Z., Wan X., Chen Y., Energy Environ. Sci., 2023, 16, 1773—1782 |
43 | Liu F., Zhou Z., Zhang C., Vergote T., Fan H., Liu F., Zhu X., J. Am. Chem. Soc., 2016, 138, 15523—15526 |
44 | Yao H., Cui Y., Yu R., Gao B., Zhang H., Hou J., Design, Angew. Chem. Int. Ed., 2017, 56, 3045—3049 |
45 | Wu J., Xu Y., Yang Z., Chen Y., Sui X., Yang L., Ye P., Zhu T., Wu X., Liu X., Cao H., Peng A., Huang H., Adv. Energy Mater., 2019, 9, 1803012 |
46 | Chen S., Yao H., Hu B., Zhang G., Arunagiri L., Ma L., Huang J., Zhang J., Zhu Z., Bai F., Ma W., Yan H., Adv. Energy Mater., 2018, 8, 1800529 |
47 | Wu Y., Bai H., Wang Z., Cheng P., Zhu S., Wang Y., Ma W., Zhan X., Energy Environ. Sci., 2015, 8, 3215—3221 |
48 | Xiao B., Tang A., Cheng L., Zhang J., Wei Z., Zeng Q., Zhou E., Sol. RRL, 2017, 1, 1700166 |
49 | Holliday S., Ashraf R. S., Wadsworth A., Baran D., Yousaf S. A., Nielsen C. B., Tan C., Dimitrov S. D., Shang Z., Gasparini N., Alamoudi M., Laquai F., Brabec C. J., Salleo A., Durrant J. R., McCulloch I., Nat. Commun., 2016, 7, 11585 |
50 | Wadsworth A., Ashraf R. S., Abdelsamie M., Pont S., Little M., Moser M., Hamid Z., Neophytou M., Zhang W., Amassian A., Durrant J. R., Baran D., McCulloch I., ACS Energy Lett., 2017, 2, 1494—1500 |
51 | Xiao B., Tang A., Zhang J., Mahmood A., Wei Z., Zhou E., Adv. Energy Mater., 2017, 7, 1602269 |
52 | Tang A., Xiao B., Chen F., Zhang J., Wei Z., Zhou E., Adv. Energy Mater., 2018, 8, 1801582 |
53 | Liu Y., Zhang Z., Feng S., Li M., Wu L., Hou R., Xu X., Chen X., Bo Z., J. Am. Chem. Soc., 2017, 139, 3356—3359 |
54 | Deng M., Xu X., Duan Y., Yu L., Li R., Peng Q., Adv. Mater., 2023, 35, 2210760 |
55 | Feng S., Zhang C., Liu Y., Bi Z., Zhang Z., Xu X., Ma W., Bo Z., Adv. Mater., 2017, 29, 1703527 |
56 | Fei Z., Eisner F. D., Jiao X., Azzouzi M., Röhr J. A., Han Y., Shahid M., Chesman A. S. R., Easton C. D., McNeill C. R., Anthopoulos T. D., Nelson J., Heeney M., Adv. Mater., 2018, 30, 1705209 |
57 | Li H., Zhao Y., Fang J., Zhu X., Xia B., Lu K., Wang Z., Zhang J., Guo X., Wei Z., Adv. Energy Mater., 2018, 8, 1702377 |
58 | Lin Y., Zhang Z.-G., Bai H., Wang J., Yao Y., Li Y., Zhu D., Zhan X., Energy Environ. Sci., 2015, 8, 610—616 |
59 | Xu H., Yang Y., Zhong C., Zhan X., Chen X., J. Mater. Chem. A, 2018, 6, 6393—6401 |
60 | Wang J., Li T., Wang X., Xiao Y., Zhong C., Wang J., Liu K., Lu X., Zhan X, Chen X., ACS Appl. Mater. Interfaces, 2019, 11, 26005—26016 |
61 | Wang J., Xu H., Xiao Y., Li T., Wang J., Liu K., Lu X., Zhan X., Chen X., Org. Electron., 2020, 82, 105705 |
62 | Yang Y., Wang J., Xu H., Zhan X., Chen X., ACS Appl. Mater. Interfaces, 2018, 10, 18984—18992 |
63 | Yang Y., Jiang X., Zhan X., Chen X., Acta Phys. Chim. Sin. 2019, 35, 257—267 |
64 | Wang J., Cai G., Jia B., Lu H., Lu X., Zhan X., Chen X., J. Mater. Chem. A, 2021, 9, 6520—6528 |
65 | Wang Y., Qian D., Cui Y., Zhang H., Hou J., Vandewal K., Kirchartz T., Gao F., Adv. Energy Mater., 2018, 8, 1801352 |
66 | Blom P. W. M., Mihailetchi V. D., Koster L. J. A., Markov D. E., Adv. Mater., 2007, 19, 1551—1566 |
67 | Riedel I., Parisi J., Dyakonov V., Lutsen L., Vanderzande D., Hummelen J. C., Adv. Funct. Mater., 2004, 14, 38—44 |
68 | Shen Y., Hosseini A. R., Wong M. H., Malliaras G. G., ChemPhysChem, 2004, 5, 16—25 |
69 | Mai J., Xiao Y., Zhou G., Wang J., Zhu J., Zhao N., Zhan X., Lu X., Adv. Mater., 2018, 30, 1802888 |
[1] | ZHANG Lifu, WANG Xinkang, CHEN Yiwang. New Strategy to Balance the Miscibility and Phase Separation to Improve Organic Solar Cells Efficiency [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230177. |
[2] | WANG Jiarui, YU Runnan, TAN Zhan’ao. Recent Advances in the Application of Metal Complexes for Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230150. |
[3] | TIAN Mei, ZHANG Zhiyang, ZHAN Chuanlang. Fused-benzotriazole Based p-Type Polymers: Fine-tuning on Absorption Band-width and Bandgap via Backbone Thiophene and Selenophene Strategies [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230190. |
[4] | LI Hao, YANG Chenyi, LI Jiayao, ZHANG Shaoqing, HOU Jianhui. Efficient Organic Solar Cells Based on Acceptor1-acceptor2 Type Polymer Donor [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230157. |
[5] | ZHANG Yu, CHEN Jiehuan, ZHOU Jiadong, LIU Linlin, XIE Zengqi. Aggregation Morphology of Perylene Bisimide Acceptors and the Role on Exciton Processes and Electron Transport in Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230092. |
[6] | SHI Shiling, JIANG Hanxi, TU Xueyang, XIAN Kaihu, HAN Dexia, LI Yanru, YAO Xiang, YE Long, FEI Zhuping. Synthesis and Photovoltaic Properties of Non-fullerene Acceptors Based on Aryl-substituted Imide End Groups [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230182. |
[7] | GUO Ziqi, JIAO Cancan, WU Simin, MENG Lingxian, SUN Yanna, KE Xin, WAN Xiangjian, CHEN Yongsheng. Effect of Substitution Positions of Alkyl Chains in Small Molecular Donor Bridged Units on the Performance of Photovoltaic Devices [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230180. |
[8] | ZAFAR Saud uz, ZHANG Weichao, YANG Shuo, LI Shilin, ZHANG Yingyu, ZHANG Yuan, ZHANG Hong, ZHOU Huiqiong. Beta-alanine as a Dual Modification Additive in Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230185. |
[9] | LI Wei, CHEN Chen, LIU Dan, WANG Tao. Hierarchical Aggregates of Non-fullerene Electron Acceptors [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230160. |
[10] | MA Yifan, ZHANG Yamin, GAN Shengmin, ZHANG Yuchen, FEI Xian, WANG Ting, ZHANG Zeqi, GONG Xuezhu, ZHANG Haoli. Ternary Organic Photovoltaic Devices Based on Wide-band Gap Small Molecule Donor Third Component [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230170. |
[11] | ZHANG Liting, QIU Dingding, ZHANG Jianqi, LYU Kun, WEI Zhixiang. Z-configuration A-DA'D-A Type Acceptor with Thermal Annealing Induced High Open Circuit Voltage [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230164. |
[12] | WU Jifa, WU Hanping, YUAN Lin, PENG Xiaobin. Enhancing the Performances of Porphyrin-based All-small-molecule Ternary Organic Solar Cells via Synergizing Fullerene and Non-fullerene Acceptors [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230136. |
[13] | SONG Yanan, YOU Zuhao, WANG Xu, LIU Yao. Research Progress of Electroactive Ionene-based Organic Photovoltaic Interlayers [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230167. |
[14] | BAI Yuanqing, ZHANG Jiabin, LIU Chunchen, HU Zhicheng, ZHANG Kai, HUANG Fei. Alkyl Chain Engineering of Bithiophene Imide-based Polymer Donor for Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230271. |
[15] | LI Yaokai, GUAN Shitao, ZUO Lijian, CHEN Hongzheng. Approaches to Achieving High-performance Semitransparent Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||