Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (5): 20220748.doi: 10.7503/cjcu20220748
• Review • Previous Articles Next Articles
HE Ruhan1,2, LI Hao1, HAN Fang1,2, CHEN Aoyuan, MAI Liqiang1(), ZHOU Liang1(
)
Received:
2022-12-06
Online:
2023-05-10
Published:
2023-03-08
Contact:
MAI Liqiang, ZHOU Liang
E-mail:mlq518@whut.edu.cn;liangzhou@whut.edu.cn
Supported by:
CLC Number:
TrendMD:
HE Ruhan, LI Hao, HAN Fang, CHEN Aoyuan, MAI Liqiang, ZHOU Liang. Research Progresses on Interface Engineering of Si-Based Anodes for Lithium-ion Batteries[J]. Chem. J. Chinese Universities, 2023, 44(5): 20220748.
1 | Chae S., Ko M., Kim K., Ahn K., Cho J., Joule, 2017, 1, 47—60 |
2 | Wu H., Cui Y., Nano Today, 2012, 7, 414—429 |
3 | Choi J. W., Aurbach D., Nat. Rev. Mater., 2016, 1, 16013 |
4 | Zuo X., Zhu J., Müller⁃Buschbaum P., Cheng Y. J., Nano Energy, 2017, 31, 113—143 |
5 | Liu Z., Yu Q., Zhao Y., He R., Xu M., Feng S., Li S., Zhou L., Mai L., Chem. Soc. Rev., 2019, 48, 285—309 |
6 | Li H., Huang X., Chen L., Wu Z., Liang Y., Electrochem. Solid⁃State Lett., 1999, 2, 547 |
7 | Cui Y., Nat. Energy, 2021, 6, 995—996 |
8 | Chan C. K., Peng H., Liu G., McIlwrath K., Zhang X. F., Huggins R. A., Cui Y., Nat. Nanotechnol., 2008, 3, 31—35 |
9 | McDowell M. T., Lee S. W., Nix W. D., Cui Y., Adv. Mater., 2013, 25, 4966—4985 |
10 | Tian H., Tan X., Xin F., Wang C., Han W., Nano Energy, 2015, 11, 490—499 |
11 | Liu Z., Guan D., Yu Q., Xu L., Zhuang Z., Zhu T., Zhao D., Zhou L., Mai L., Energy Storage Mater., 2018, 13, 112—118 |
12 | Liu Z., Zhao Y., He R., Luo W., Meng J., Yu Q., Zhao D., Zhou L., Mai L., Energy Storage Mater., 2019, 19, 299—305 |
13 | Shi Y., Zhou X., Yu G., Acc. Chem. Res., 2017, 50, 2642—2652 |
14 | Haregewoin A. M., Wotango A. S., Hwang B. J., Energy Environ. Sci., 2016, 9, 1955—1988 |
15 | Xu K., Chem. Rev., 2014, 114, 11503—11618 |
16 | Kim K., Ma H., Park S., Choi N. S., ACS Energy Lett., 2020, 5, 1537—1553 |
17 | Borodin O., Ren X., Vatamanu J., von Wald Cresce A., Knap J., Xu K., Acc. Chem. Res., 2017, 50, 2886—2894 |
18 | Ghassemi H., Au M., Chen N., Heiden P. A., Yassar R. S., ACS Nano, 2011, 5, 7805—7811 |
19 | Gu M., Parent L. R., Mehdi B. L., Unocic R. R., McDowell M. T., Sacci R. L., Xu W., Connell J. G., Xu P., Abellan P., Chen X., Zhang Y., Perea D. E., Evans J. E., Lauhon L. J., Zhang J. G., Liu J., Browning N. D., Cui Y., Arslan I., Wang C. M., Nano Lett., 2013, 13, 6106—6112 |
20 | Radvanyi E., Porcher W., Vito E. D., Montani A., Franger S., Jouanneau Si Larbi S., Phys. Chem. Chem. Phys., 2014, 16, 17142—17153 |
21 | Li H., Huang X., Chen L., Zhou G., Zhang Z., Yu D., Jun Mo Y., Pei N., Solid State Ionics, 2000, 135, 181—191 |
22 | Kasavajjula U., Wang C., Appleby A. J., J. Power Sources, 2007, 163, 1003—1039 |
23 | Liu J., Kopold P., van Aken P. A., van Aken J., Yu Y., Angew. Chem. Int. Ed., 2015, 54, 9632—9636 |
24 | Luo W., Chen X., Xia Y., Chen M., Wang L., Wang Q., Li W., Yang J., Adv. Energy Mater., 2017, 7, 1701083 |
25 | Wang H., Wang C., Tang Y., EcoMat, 2021, 3, e12172 |
26 | Liu X. H., Zhong L., Huang S., Mao S. X., Zhu T., Huang J. Y., ACS Nano, 2012, 6, 1522—1531 |
27 | Kim H., Seo M., Park M. H., Cho J., Angew. Chem. Int. Ed., 2010, 49, 2146—2149 |
28 | Chan C. K., Peng H., Liu G., McIlwrath K., Zhang X. F., Huggins R. A., Cui Y., Nat Nanotechnol., 2008, 3, 31—35 |
29 | Liu J., Li N., Goodman M. D., Zhang H. G., Epstein E. S., Huang B., Pan Z., Kim J., Choi J. H., Huang X., Liu J., Hsia K. J., Dillon S. J., Braun P. V., ACS Nano, 2015, 9, 1985—1994 |
30 | Ryu J., Hong D., Choi S., Park S., ACS Nano, 2016, 10, 2843—2851 |
31 | Liu J., Yang Y., Lyu P., Nachtigall P., Xu Y., Adv. Mater., 2018, 30, 1800838 |
32 | Hou G., Cheng B., Yang Y., Du Y., Zhang Y., Li B., He J., Zhou Y., Yi D., Zhao N., Bando Y., Golberg D., Yao J., Wang X., Yuan F., ACS Nano, 2019, 13, 10179—10190 |
33 | Fu R., Zhang K., Zaccaria R. P., Huang H., Xia Y., Liu Z., Nano Energy, 2017, 39, 546—553 |
34 | Chang J., Huang X., Zhou G., Cui S., Hallac P. B., Jiang J., Hurley P. T., Chen J., Adv. Mater., 2014, 26, 758—764 |
35 | Lee K. L., Jung J. Y., Lee S. W., Moon H. S., Park J. W., J. Power Sources, 2004, 129, 270—274 |
36 | Lee S. K., Oh S. M., Park E., Scrosati B., Hassoun J., Park M. S., Kim Y. J., Kim H., Belharouak I., Sun Y. K., Nano Lett., 2015, 15, 2863—2868 |
37 | Sung J., Ma J., Choi S. H., Hong J., Kim N., Chae S., Son Y., Kim S. Y., Cho J., Adv. Mater., 2019, 31, 1900970 |
38 | Zhang C., Wang F., Han J., Bai S., Tan J., Liu J., Li F., Small Structures, 2021, 2, 2100009 |
39 | Yao Y., McDowell M. T., Ryu I., Wu H., Liu N., Hu L., Nix W. D., Cui Y., Nano Lett., 2011, 11, 2949—2954 |
40 | Liu N., Hu L., McDowell M. T., Yao Y., Wang C., Cui Y., Nano Lett., 2012, 12, 3315—3321 |
41 | Di F., Wang N., Li L., Geng X., Yang H., Zhou W., Sun C., An B., J. Alloys Compd., 2021, 854, 157253 |
42 | Zhang X., Wang D., Qiu X., Ma Y., Kong D., Müllen K., Li X., Zhi L., Nat. Commun., 2020, 11, 3826 |
43 | Xu Q., Li J. Y., Sun J. K., Yin Y. X., Wan L. J., Guo Y. G., Adv. Energy Mater., 2017, 7, 1601481 |
44 | Shi J., Zu L., Gao H., Hu G., Zhang Q., Adv. Funct. Mater., 2020, 30, 2002980 |
45 | Liu N., Lu Z., Zhao J., McDowell M. T., Lee H. W., Zhao W., Cui Y., Nat. Nanotechnol., 2014, 9, 187—192 |
46 | Magasinski A., Dixon P., Hertzberg B., Kvit A., Ayala J., Yushin G., Nat. Mater., 2010, 9, 353—358 |
47 | Hu G., Yu R., Liu Z., Yu Q., Zhang Y., Chen Q., Wu J., Zhou L., Mai L., ACS Appl. Mater. Interfaces, 2021, 13, 3991—3998 |
48 | Zhou J., Lu Y., Yang L., Zhu W., Liu W., Yang Y., Liu K., Carbon Energy, 2022, 4, 399—410 |
49 | Luo W., Wang Y., Chou S., Xu Y., Li W., Kong B., Dou S. X., Liu H. K., Yang J., Nano Energy, 2016, 27, 255—264 |
50 | An W., He P., Che Z., Xiao C., Guo E., Pang C., He X., Ren J., Yuan G., Du N., Yang D., Peng D., Zhang Q., ACS Appl. Mater. Interfaces, 2022, 14, 10308—10318 |
51 | Li Y., Yan K., Lee H. W., Lu Z., Liu N., Cui Y., Nat. Energy, 2016, 1, 1—9 |
52 | Zhang X., Guo R., Li X., Zhi L., Small, 2018, 14, 1800752 |
53 | Chen F., Han J., Kong D., Yuan Y., Xiao J., Wu S., Tang D. M., Deng Y., Lv W., Lu J., Kang F., Yang Q. H., Nat. Sci. Rev., 2021, 8, nwab012 |
54 | Fukata N., Mitome M., Bando Y., Wu W., Wang Z. L., Nano Energy, 2016, 26, 37—42 |
55 | Han J., Jo S., Na I., Oh S. M., Jeon Y. M., Park J. G., Koo B., Hyun H., Seo S., Lee D., Kim H., Kim J., Lim J. C., Lim J., ACS Appl. Mater. Interfaces, 2021, 13, 52202—52214 |
56 | Miyachi M., Yamamoto H., Kawai H., J. Electrochem. Soc., 2007, 154, A376 |
57 | Jeong G., Kim Y. U., Krachkovskiy S. A., Lee C. K., Chem. Mater., 2010, 22, 5570—5579 |
58 | Wu H., Chan G., Choi J. W., Ryn I., Yao Y., McDowell M. T., Lee S. W., Jackson A., Yang Y., Hu L., Cui Y., Nat. Nanotechnol., 2012, 7, 310—315 |
59 | Park E., Yoo H., Lee J., Park M. S., Kim Y. J., Kim H., ACS Nano, 2015, 9, 7690—7696 |
60 | Im J., Kwon J. D., Kim D. H., Yoon S., Cho K. Y., Small Methods, 2022, 6, 2101052 |
61 | Choi S., Jung D. S., Choi J. W., Nano Lett., 2014, 14, 7120—7125 |
62 | Yu C., Chen X., Xiao Z., Lei C., Zhang C., Lin X., Shen B., Zhang R., Wei F., Nano Lett., 2019, 19, 5124—5132 |
63 | Yang J., Wang Y., Li W., Wang L., Fan Y., Jiang W., Luo W., Wang Y., Kong B., Selomulya C., Liu H. K., Dou S. K., Zhao D., Adv. Mater., 2017, 29, 1700523 |
64 | Yan Y., He Y. S., Zhao X., Zhao W., Ma Z. F., Yang X., Nano Energy, 2021, 84, 105935 |
65 | Lu B., Ma B., Deng X., Wu B., Wu Z., Luo J., Wang X., Chen G., Chem. Eng. J., 2018, 351, 269—279 |
66 | He Y., Yu X., Wang Y., Li H., Huang X., Adv. Mater., 2011, 23, 4938—4941 |
67 | Ai Q., Li D., Guo J., Hou G., Sun Q., Sun Q., Xu X., Zhai W., Zhang L., Feng J., Si P., Lou J., Ci L., Adv. Mater. Interfaces, 2019, 6, 1901187 |
68 | Chen C. J., Mori T., Jena A., Lin H. Y., Yang N. H., Wu N. L., Chang H., Hu S. F., Liu R. S., ChemistrySelect, 2018, 3, 729—735 |
69 | Jiang M., Yu Y., Fan H., Xu H., Zheng Y., Huang Y., Li S., Li J., ACS Appl. Mater. Interfaces, 2019, 11, 15656—15661 |
70 | Chen X., Ge G., Wang W., Zhang B., Jiang J., Yang X., Li Y., Wang L., He X., Sun Y., Sci. China: Chem., 2021, 64, 1417—1425 |
71 | Chen Z., Soltani A., Chen Y., Zhang Q., Davoodi A., Hosseinpour S., Peukert W., Liu W., Adv. Energy Mater., 2022, 12, 2200924 |
72 | Wu H., Yu G., Pan L., Liu N., McDowell M. T., Bao Z., Cui Y., Nat. Commun., 2013, 4, 1—6 |
73 | Gao Y., Yi R., Li Y. C., Song J., Chen S., Huang Q., Mallouk T. E., Wang D., J. Am. Chem. Soc., 2017, 139, 17359—17367 |
74 | Piper D. M., Travis J. J., Young M., Son S. B., Kim S. C., Oh K. H., George S. M., Ban C., Lee S. H., Adv. Mater., 2014, 26, 1596—1601 |
75 | Ai Q., Fang Q., Liang J., Xu X., Zhai T., Gao G., Guo H., Han G., Ci L., Lou J., Nano Energy, 2020, 72, 104657 |
76 | Liu X., Xu Z., Iqbal A., Chen M., Ali N., Low C., Qi R., Zai J., Qian X., Nano⁃Micro Lett., 2021, 13, 1—12 |
77 | Kwon Y. H., Minnici K., Park J. J., Lee S. R., Zhang G., Takeuchi E. S., Takeuchi K. J., Marschilok A. C., Reichmanis E., J. Am. Chem. Soc., 2018, 140, 5666—5669 |
78 | Mu T., Zhao Y., Zhao C., Holmes N. G., Lou S., Li J., Li W., He M., Sun Y., Du C., Adv. Funct. Mater., 2021, 31, 2010526 |
79 | Fang J. B., Cao Y. Q., Chang S. Z., Teng F. R., Wu D., Li A. D., Adv. Funct. Mater., 2022, 32, 2109682 |
80 | Li G., Huang L. B., Yan M. Y., Li J. Y., Jiang K. C., Yin Y. X., Xin S., Xu Q., Guo Y. G., Nano Energy, 2020, 74, 104890 |
81 | Chen Z., Soltani A., Chen Y., Zhang Q., Davoodi A., Hosseinpour S., Peukert W., Liu W., Adv. Energy Mater., 2022, 12, 2200924 |
82 | Yan Z., Liu J., Lin Y., Deng Z., He X., Ren J., He P., Pang C., Xiao C., Yang D., Electrochim. Acta, 2021, 390, 138814 |
83 | Zhang W., Cai T. H., Sheldon B. W., Adv. Energy Mater., 2019, 9, 1803066 |
84 | Li Q., Liu X., Han X., Xiang Y., Zhong G., Wang J., Zheng B., Zhou J., Yang Y., ACS Appl. Mater. Interfaces, 2019, 11, 14066—14075 |
85 | Nguyen C. C., Lucht B. L., J. Electrochem. Soc., 2014, 161, A1933 |
86 | Jin Y., Kneusels N. J. H., Marbella L. E., Castillo⁃Martínez E., Magusin P. C. M. M., Weatherup R. S., Jónsson E., Liu T., Paul S., Grey C. P., J. Am. Chem. Soc., 2018, 140, 9854—9867 |
87 | Lee S. J., Han J. G., Lee Y., Jeong M. H., Shin W. C., Ue M., Choi N. S., Electrochim. Acta, 2014, 137, 1—8 |
88 | Nie M., Abraham D. P., Chen Y., Bose A., Lucht B. L., J. Phys. Chem. C, 2013, 117, 13403—13412 |
89 | Wang J., Zhang L., Zhang H., Ionics, 2018, 24, 3691—3698 |
90 | Han J. G., Lee J. B., Cha A., Lee T. K., Cho W., Chae S., Kang S. J., Kwak S. K., Cho J., Hong S. Y., Choi N. S., Energy Environ. Sci., 2018, 11, 1552—1562 |
91 | Jo H., Kim J., Nguyen D. T., Kang K. K., Jeon D. M., Yang A. R., Song S. W., J. Phys. Chem. C, 2016, 120, 22466—22475 |
92 | Yao K., Zheng J. P., Liang R., J. Power Sources, 2018, 381, 164—170 |
93 | Jaumann T., Balach J., Klose M., Oswald S., Eckert J., Giebeler L., J. Electrochem. Soc., 2016, 163, A557 |
94 | Yang G., Frisco S., Tao R., Philip N., Bennett T. H., Stetson C., Zhang J. G., Han S. D., Teeter G., Harvey S. P., ACS Energy Lett., 2021, 6, 1684—1693 |
95 | Xu Z., Yang J., Li H., Nuli Y., Wang J., J. Mater. Chem. A, 2019, 7, 9432—9446 |
96 | Chen J., Fan X., Li Q., Yang H., Khoshi M. R., Xu Y., Hwang S., Chen L., Ji X., Yang C., He H., Wang C., Garfunkel E., Su D., Borodin O., Wang C., Nat. Energy, 2020, 5, 386—397 |
97 | Dunn R. P., Nadimpalli S. P. V., Guduru P., Lucht B. L., J. Electrochem. Soc., 2013, 161, A176 |
98 | Matsumoto K., Inoue K., Utsugi K., J. Power Sources, 2015, 273, 954—958 |
99 | Suo L., Hu Y. S., Li H., Armand M., Chen L., Nat. Commun., 2013, 4, 1—9 |
100 | Qian J., Henderson W. A., Xu W., Bhattacharya P., Engelhard M., Borodin O., Zhang J. G., Nat. Commun., 2015, 6, 6362 |
101 | Ren X., Chen S., Lee H., Mei D., Engelhard M. H., Burton S. D., Zhao W., Zheng J., Li Q., Ding M. S., Chem, 2018, 4, 1877—1892 |
102 | Cao X., Ren X., Zou L., Engelhard M. H., Huang W., Wang H., Matthews B. E., Lee H., Niu C., Arey B. W., Cui Y., Wang C., Xiao J., Liu J., Xu W., Zhang J. G., Nat. Energy, 2019, 4, 796—805 |
103 | Jia H., Zou L., Gao P., Cao X., Zhao W., He Y., Engelhard M. H., Burton S. D., Wang H., Ren X., Li Q., Yi R., Zhang X., Wang C., Xu Z., Li X., Zhang J. G., Xu W., Adv. Energy Mater., 2019, 9, 1900784 |
104 | Chae S., Kwak W. J., Han K. S., Li S., Engelhard M. H., Hu J., Wang C., Li X., Zhang J. G., ACS Energy Lett., 2021, 6, 387—394 |
105 | Huo H., Janek J., ACS Energy Lett., 2022, 7, 4005—4016 |
106 | Lee S. J., Baik H. K., Lee S. M., Electrochem. Commun., 2003, 5, 32—35 |
107 | Chen C., Li Q., Li Y., Cui Z., Guo X., Li H., ACS Appl. Mater. Interfaces, 2018, 10, 2185—2190 |
108 | Tan D. H. S., Chen Y. T., Yang H., Bao W., Sreenarayanan B., Doux J. M., Li W., Lu B., Ham S. Y., Sayahpour B., Scharf J., Wu E. A., Han H. E., Hah H. J., Lee J. B., Chen Z., Meng Y. S., Science, 2021, 373, 1494—1499 |
[1] | BI Ruyi, ZHAO Jilu, WANG Jiangyan, YU Ranbo, WANG Dan. Synthesis and Lithium-ion Battery Performance of Hollow Multishelled CoFe2O4 [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220453. |
[2] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[3] | LI Shurong, WANG Lin, CHEN Yuzhen, JIANG Hailong. Research Progress of Metal⁃organic Frameworks on Liquid Phase Catalytic Chemical Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210575. |
[4] | BAO Junquan, ZHENG Shibing, YUAN Xuming, SHI Jinqiang, SUN Tianjiang, LIANG Jing. An Organic Salt PTO(KPD)2 with Enhanced Performance as a Cathode Material in Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(9): 2911. |
[5] | WU Zhuoyan, LI Zhi, ZHAO Xudong, WANG Qian, CHEN Shunpeng, CHANG Xinghua, LIU Zhiliang. A Highly Efficient One-step Preparation Method of Nano-silicon and Carbon Composite for High-performance Lithium Ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2500. |
[6] | YI Conghua, SU Huajian, QIAN Yong, LI Qiong, YANG Dongjie. Preparation of Lignin Nanocarbon and Its Performance as a Negative Electrode for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(6): 1807. |
[7] | MAO Eryang, WANG Li, SUN Yongming. Advances in Alloy-based High-capacity Li-containing Anodes for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(5): 1552. |
[8] | WANG Yimeng, LIU Kai, WANG Baoguo. Coating Strategies of Ni-rich Layered Cathode in LIBs [J]. Chem. J. Chinese Universities, 2021, 42(5): 1514. |
[9] | ZHANG Shuting, AN Qi. Progress on the Design and Fabrication of High Performance Piezoelectric Flexible Materials Based on Polyvinylidene Fluoride [J]. Chem. J. Chinese Universities, 2021, 42(4): 1114. |
[10] | BA Zhichen, LIANG Daxin, XIE Yanjun. Progress of MXenes Composites: Interface Modification and Structure Design [J]. Chem. J. Chinese Universities, 2021, 42(4): 1225. |
[11] | SUN Quanhu, LU Tiantian, HE Jianjiang, HUANG Changshui. Advances in the Study of Heteratomic Graphdiyne Electrode Materials [J]. Chem. J. Chinese Universities, 2021, 42(2): 366. |
[12] | ZHOU Zhan, MA Lufang, TAN Chaoliang. Preparation of Layered (NH4)2V6O16·H2O Nanosheets as an Anode for Li-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(2): 662. |
[13] | GONG Shanshan, WU Tong, WANG Guange, HUANG Qing, SU Yuefeng, WU Feng. Screening of Deep Eutectic Solvent Based on Efficient Recovery of Spent Lithium⁃ion Battery Cathode Materials [J]. Chem. J. Chinese Universities, 2021, 42(10): 3151. |
[14] | XIANG Houzheng, XIE Hongxiang, LI Wenchao, LIU Xiaolei, MAO Aiqin, YU Haiyun. Synthesis and Electrochemical Performance of Spinel-type High-entropy Oxides [J]. Chem. J. Chinese Universities, 2020, 41(8): 1801. |
[15] | LU Di,ZHENG Chunman,CHEN Yufang,LI Yujie,ZHANG Hongmei. Synthesis of Li-rich Layers/Spinel/Carbon Composite Cathode Materials with Phenol Formaldehyde Resin and Its Electrochemical Performance† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1684. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||