Chem. J. Chinese Universities ›› 2016, Vol. 37 ›› Issue (2): 201.doi: 10.7503/cjcu20150796
• Reviews • Previous Articles Next Articles
SONG Chunxia, YANG Xiaohai*(), WANG Kemin*(
), WANG Qing, LIU Jianbo, HUANG Jin, LI Wenshan, HUANG Haihua, LIU Wei
Received:
2015-10-15
Online:
2016-02-10
Published:
2016-01-14
Contact:
YANG Xiaohai,WANG Kemin
E-mail:yangxiaohai@hnu.edu.cn;kmwang@hnu.edu.cn
Supported by:
CLC Number:
TrendMD:
SONG Chunxia, YANG Xiaohai, WANG Kemin, WANG Qing, LIU Jianbo, HUANG Jin, LI Wenshan, HUANG Haihua, LIU Wei. Application of Polymers in Fluorescence Analysis†[J]. Chem. J. Chinese Universities, 2016, 37(2): 201.
Fig.1 Application of polymers in fluorescence analyses[10—12] (C) Copyright(2010) from American Chemical Society; (D) Copyright(2014) from American Chemical Society; (E) Copyright(2013) from American Chemical Society.
Fig.3 Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene[19] Copyright(2013) from American Chemical Society.
Fig.4 Proposed secondary structure of the thrombin aptamer(A) and the interaction of the aptamer with human thrombin(B) [26] Copyright(1997) from Academic Press.
Fig.5 Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration[28] Copyright(2011) from National Academy of Sciences.
Fig.8 Poly(thymine)-templated selective formation of fluorescent copper nanoparticles[75] Copyright(2013) from Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig.9 Competitive host-guest interaction(CHGI) between β-cyclodextrin polymer and pyrene-labeled probes for fluorescence analyses[88] Copyright(2015) from American Chemical Society.
Fig.12 Self-assembled supramolecular nanoprobes for ratiometric fluorescence measurement of intracellular pH values[101] Copyright(2015) from American Chemical Society.
[1] | Nicholson J.W., The Chemistry of Polymers, Translated by Fu Z. Y., China Textile Press, Beijing, 2005, 1—2 |
(付中玉[译]. 聚合物化学, 北京: 中国纺织出版社, 2005, 1—2) | |
[2] | Ma D.Z., He P. S., Xu Z. D., Structure and Performance of High Polymer, Science Press, Beijing, 1981, 551—552 |
(马德柱, 何平笙, 徐仲德. 高聚物的结构和性能, 北京: 科学出版社, 1981, 551—552) | |
[3] | Mascini M., Aptamers in Bioanalysis, Translated by Qu F. et al., Chemical Industry Press, Beijing, 2010, 1—5 |
(屈锋等[译]. 生物分析中的核酸适配体, 北京: 化学工业出版社, 2010, 1—5) | |
[4] | Pauling L., J. Am. Chem. Soc., 1940, 62, 2643—2657 |
[5] | Wulff G., Sarhan A., Zabrocki K., Tetrahedron Lett., 1973, 14, 4329—4332 |
[6] | Vlatakis G., Andersson L. I., Muller R., Mosbach K., Nature, 1993, 361, 645—647 |
[7] | Zhou Q., Swager T. M., J. Am. Chem. Soc., 1995, 117, 7017—7018 |
[8] | Zhou Q., Swager T. M., J. Am. Chem. Soc., 1995, 117, 12593—12602 |
[9] | Li Y., Lin T. Y., Luo Y., Liu Q., Xiao W., Guo W., Lac D., Zhang H., Feng C., Wachsmann-Hogiu S., Walton J. H., Cherry S. R., Rowland D. J., Kukis D., Pan C., Lam K. S., Nat. Commun., 2014, 5, 5712—5718 |
[10] | Schirhagl R., Anal. Chem., 2014, 86, 250—261 |
[11] | Zeng H. X., Little H., Tiambeng T., Williams G., Guan Z. B., J. Am. Chem. Soc., 2013, 135, 4962—4965 |
[12] | Duan X., Liu L., Feng F., Wang S., Acc. Chem. Res., 2010, 43, 260—270 |
[13] | Hermann T., Patel D. J., Science, 2000, 287, 820—825 |
[14] | Liu J., Cao Z., Lu Y., Chem. Rev., 2009, 109, 1948—1998 |
[15] | Yan H., Yu H.W., Wei W., Functional Polymer, Chemical Industry Press, Beijing, 2013, 92—100 |
(晏欣, 余红伟, 魏徵. 功能聚合物, 北京: 化学工业出版社, 2013, 92—100) | |
[16] | Chen L., Xu S., Li J., Chem. Soc. Rev., 2011, 40, 2922—2942 |
[17] | Jiang Z.Y., Wu H., Molecular Imprinting Technology, Chemical Industry Press, Beijing, 2003, 1—40 |
(姜忠义, 吴洪. 分子印迹技术, 北京: 化学工业出版社, , 2003, 1—40) | |
[18] | Komiyama M., Takecuchi T., Mukawa T., Asanuma H., Molecular Imprinting—from Fundamentals to Applications, Translated by Wu S. K., Wang P. F., Science Press, Beijing, 2006, 1—29 |
(吴世康, 汪鹏飞[译]. 分子印迹学—从基础到应用, 北京: 科学出版社, 2006, 1—29) | |
[19] | Xu S. F., Lu H. Z., Li J. H., Song X. L., Wang A. X., Chen L. X., Han S. B., ACS Appl. Mater. Interfaces, 2013, 5, 8146—8154 |
[20] | Liu C. B., Song Z. L., Pan J. M., Yan Y. S., Cao Z. J., Wei X., Gao L., Wang J., Dai J. D., Meng M. J., Yu P., Talanta, 2014, 125, 14—23 |
[21] | Cheng Y., Jiang P., Dong X., RSC Adv., 2015, 5, 55066—55074 |
[22] | Liu X. Y., Fang H. X., Yu L. P., Talanta, 2013, 116, 283—289 |
[23] | Fang X., Tan W., Acc. Chem. Res., 2010, 43, 48—57 |
[24] | Ellington A. D., Szostak J. W., Nature, 1990, 346, 818—822 |
[25] | Proske D., Blank M., Buhmann R., Resch A., Appl. Microbiol. Biotechnol., 2005, 69, 367—374 |
[26] | Tasset D. M., Kubik M. F., Steiner W., J. Mol. Biol., 1997, 272, 688—698 |
[27] | Song C., Yang X., Wang K., Wang Q., Liu J., Huang J., He L., Liu P., Qing Z., Liu W., Chem. Commun., 2015, 51, 1815—1818 |
[28] | Shi H., He X. X., Wang K. M., Wu X., Ye X. S., Guo Q. P., Tan W. H., Qing Z. H., Yang X. H., Zhou B., Proc. Nalt. Acad. Sci. USA, 2011, 108, 3900—3905 |
[29] | Tang Z. W., Mallikaratchy P., Yang R. H., Kim Y. M., Zhu Z., Wang H., Tan W. H., J. Am. Chem. Soc., 2008, 130, 11268—11269 |
[30] | Tan Y., Guo Q., Zhao X., Yang X., Wang K., Huang J., Zhou Y., Biosens. Bioelectron., 2014, 51, 255—260 |
[31] | Ahn D. J., Kim J. M., Acc. Chem. Res., 2008, 41, 805—816 |
[32] | Ho H. A., Najari A., Leclerc M., Acc. Chem. Res., 2008, 41, 168—178 |
[33] | Rochat S., Swager T. M., ACS Appl. Mater. Interfaces, 2013, 5, 4488—4502 |
[34] | Rose A., Zhu Z., Madigan C. F., Swager T. M., Bulovic V., Nature, 2005, 434, 876—879 |
[35] | Rochat S., Swager T. M., Angew. Chem. Int. Ed., 2014, 53, 9792—9796 |
[36] | Huang H., Shi F. P., Li Y. N., Niu L., Gao Y., Shah S. M., Su X. G., Sens. Act. B Chem., 2013, 178, 532—540 |
[37] | Hong T., Wang T., Guo P., Xing X., Ding F., Chen Y., Wu J., Ma J., Wu F., Zhou X., Anal. Chem., 2013, 85, 10797—10802 |
[38] | Huang H., Wang K., Tan W., An D., Yang X., Huang S., Zhai Q., Zhou L., Jin Y., Angew. Chem. Int. Ed., 2004, 43, 5635—5638 |
[39] | Dedeoglu B., Monari A., Etienne T., Aviyente V., Özen A. S., J. Phys. Chem. C, 2014, 118, 23946—23953 |
[40] | Wang C., Tang Y., Liu Y., Guo Y., Anal. Chem., 2014, 86, 6433—6438 |
[41] | Wang C., Tang Y., Guo Y., ACS Appl. Mater. Interfaces, 2014, 6, 21686—21691 |
[42] | Seo S., Kim J., Jang G., Kim D., Lee T. S., ACS Appl. Mater. Interfaces, 2014, 6, 918—924 |
[43] | Rush A. M., Nelles D. A., Blum A. P., Barnhill S. A., Tatro E. T., Yeo G. W., Gianneschi N. C., J. Am. Chem. Soc., 2014, 136, 7615—7618 |
[44] | Xie Y., Zhao R., Tan Y., Zhang X., Liu F., Jiang Y., Tan C., ACS Appl. Mater. Interfaces, 2012, 4, 405—410 |
[45] | Huang Y., Yao X., Zhang R., Ouyang L., Jiang R., Liu X., Song C., Zhang G., Fan Q., Wang L., Huang W., ACS Appl. Mater. Interfaces, 2014, 6, 19144—19153 |
[46] | Nie C., Zhu C., Feng L., Lv F., Liu L., Wang S., ACS Appl. Mater. Interfaces, 2013, 5, 4549—4554 |
[47] | Li J., Tian C., Yuan Y., Yang Z., Yin C., Jiang R., Song W., Li X., Lu X., Zhang L., Fan Q., Huang W., Macromolecules, 2015, 48, 1017—1025 |
[48] | Bao Y., de Keersmaecker H., Corneillie S., Yu F., Mizuno H., Zhang G., Hofkens J., Mendrek B., Kowalczuk A., Smet M., Chem. Mater., 2015, 27, 3450—3455 |
[49] | Gopalakrishnan D., Dichtel W. R., J. Am. Chem. Soc., 2013, 135, 8357—8362 |
[50] | Gaylord B. S., Heeger A. J., Bazan G. C., Proc. Nalt. Acad. Sci. USA, 2002, 99, 10954—10957 |
[51] | Nilsson K. P. R., Inganas O., Nat. Mater., 2003, 2, 419—424 |
[52] | Wang S., Gaylord B. S., Bazan G. C., J. Am. Chem. Soc., 2004, 126, 5446—5451 |
[53] | Pu K. Y., Li K., Liu B., Adv. Funct. Mater., 2010, 20, 2770—2777 |
[54] | Zheng J., Zhang C., Dickson R. M., Phys. Rev. Lett., 2004, 93, 077402 |
[55] | Yeh H. C., Sharma J., Han J. J., Martinez J. S., Werner J. H., Nano Lett., 2010, 10, 3106—3110 |
[56] | Zheng J., Petty J. T., Dickson R. M., J. Am. Chem. Soc., 2003, 125, 7780—7781 |
[57] | Zheng J., Dickson R. M., J. Am. Chem. Soc., 2002, 124, 13982—13983 |
[58] | Petty J. T., Zheng J., Hud N. V., Dickson R. M., J. Am. Chem. Soc., 2004, 126, 5207—5212 |
[59] | Guo W., Yuan J., Dong Q., Wang E., J. Am. Chem. Soc., 2010, 132, 932—934 |
[60] | Xiao S. J., Hu P. P., Xiao G. F., Wang Y., Liu Y., Huang C. Z., J. Phys. Chem. B, 2012, 116, 9565—9569 |
[61] | Seidel C. A. M., Schulz A., Sauer M. H. M., J. Phys. Chem., 1996, 100, 5541—5553 |
[62] | Lee J., Park J., Lee H. H., Kim H. I., Kim W. J., J. Mater. Chem. B, 2014, 2, 2616—2621 |
[63] | Shang L., Dong S., J. Mater. Chem., 2008, 18, 4636—4640 |
[64] | Shang L., Dong S., Chem. Commun., 2008, 7, 1088—1090 |
[65] | Tanaka S., Miyazaki J., Tiwari D. K., Jin T., Inouye Y., Angew. Chem. Int. Ed., 2011, 50, 431—435 |
[66] | Torimura M., Kurata S., Yamada K., Yokomaku T., Kamagata Y., Kanagawa T., Kurane R., Anal. Sci., 2001, 17, 155—160 |
[67] | Yang X., Zhu Y., Liu P., He L., Li Q., Wang Q., Wang K., Huang J., Liu J., Anal. Methods UK, 2012, 4, 895—897 |
[68] | Hu Y., Wu Y., Chen T., Chu X., Yu R., Anal. Methods UK, 2013, 5, 3577—3581 |
[69] | Zhang Z., Sharon E., Freeman R., Liu X., Willner I., Anal. Chem., 2012, 84, 4789—4797 |
[70] | Yin J., He X., Wang K., Xu F., Shangguan J., He D., Shi H., Anal. Chem., 2013, 85, 12011—12019 |
[71] | Cao A. P., Zhang C. Y., Anal. Chem., 2012, 84, 6199—6205 |
[72] | Wang L., Tian J. Q., Li H. L., Zhang Y. W., Sun X. P., Analyst, 2011, 136, 891—893 |
[73] | Yin J., He X., Wang K., Qing Z., Wu X., Shi H., Yang X., Nanoscale, 2012, 4, 110—112 |
[74] | Rotaru A., Dutta S., Jentzsch E., Gothelf K., Mokhir A., Angew. Chem. Int. Ed., 2010, 49, 5665—5667 |
[75] | Qing Z., He X., He D., Wang K., Xu F., Qing T., Yang X., Angew. Chem. Int. Ed., 2013, 52, 9719—9722 |
[76] | Qing Z., Mao Z., Qing T., He X., Zou Z., He D., Shi H., Huang J., Liu J., Wang K., Anal. Chem., 2014, 86, 11263—11268 |
[77] | Xu F., Shi H., He X., Wang K., He D., Guo Q., Qing Z., Yan L. A., Ye X., Li D., Tang J., Anal. Chem., 2014, 86, 6976—6982 |
[78] | Zhang L., Zhao J., Duan M., Zhang H., Jiang J., Yu R., Anal. Chem., 2013, 85, 3797—3801 |
[79] | Zhou Z., Du Y., Dong S., Anal. Chem., 2011, 83, 5122—5127 |
[80] | Hu R., Liu Y., Kong R., Donovan M. J., Zhang X., Tan W., Shen G., Yu R., Biosens. Bioelectron., 2013, 42, 31—35 |
[81] | Chen J., Liu J., Fang Z., Zeng L., Chem. Commun., 2012, 48, 1057—1059 |
[82] | Wang X. P., Yin B. C., Ye B. C., RSC Adv., 2013, 3, 8633—8636 |
[83] | Qing Z. H., He X. X., Qing T. P., Wang K. M., Shi H., He D. G., Zou Z., Yan L., Xu F. Z., Ye X. S., Mao Z. G., Anal. Chem., 2013, 85, 12138—12143 |
[84] | Jia X., Li J., Han L., Ren J., Yang X., Wang E., ACS Nano, 2012, 6, 3311—3317 |
[85] | Yuan Z.Q., Polyethyleneimine Assisted Synthesis of Fluorescent Gold/Silver Nanomaterials and Their Applications, Hunan University, Changsha, 2013, 70—85 |
(袁智勤. 聚乙烯亚胺辅助的荧光金、 银纳米材料的合成及应用研究, 长沙: 湖南大学, 2013, 70—85) | |
[86] | Yuan Z., Peng M., Shi L., Du Y., Cai N., He Y., Chang H. T., Yeung E. S., Nanoscale, 2013, 5, 4683—4686 |
[87] | Hollas M., Chung M. A., Adams J., J. Phys. Chem. B, 1998, 102, 2947—2953 |
[88] | Liu P., Sun S., Guo X., Yang X., Huang J., Wang K., Wang Q., Liu J., He L., Anal. Chem., 2015, 87, 2665—2671 |
[89] | Guo X., Liu P., Yang X., Wang K., Wang Q., Guo Q., Huang J., Liu J., Song C., Li W., Analyst, 2015, 140, 2016—2022 |
[90] | Guo X., Yang X., Liu P., Wang K., Wang Q., Guo Q., Huang J., Li W., Xu F., Song C., Analyst, 2015, 140, 4291—4297 |
[91] | Zheng D., Zou R., Lou X., Anal. Chem., 2012, 84, 3554—3560 |
[92] | Pomerantz A. K., Moerner W. E., Kool E. T., J. Phys. Chem. B, 2008, 112, 13184—13187 |
[93] | Oba S., Hatakeyama M., Handa H., Kawaguchi H., Bioconjugate Chem., 2005, 16, 551—558 |
[94] | Liao D. L., Chen J., Zhou H. P., Wang Y., Li Y. X., Yu C., Anal. Chem., 2013, 85, 2667—2672 |
[95] | Wang B., Yu C., Angew. Chem. Int. Ed., 2010, 49, 1485—1488 |
[96] | Wurthner F., Chen Z., Dehm V., Stepanenko V., Chem. Commun., 2006, 37, 1188—1190 |
[97] | Zhu G., Zhang S., Song E., Zheng J., Hu R., Fang X., Tan W., Angew. Chem. Int. Ed., 2013, 52, 5490—5496 |
[98] | Zhu G., Zheng J., Song E., Donovan M., Zhang K., Liu C., Tan W., Proc. Nalt. Acad. Sci. USA, 2013, 110, 7998—8003 |
[99] | Yang L., Meng L., Zhang X., Chen Y., Zhu G., Liu H., Xiong X., Sefah K., Tan W., J. Am. Chem. Soc., 2011, 133, 13380—13386 |
[100] | Balamurugan A., Lee H. I., Macromolecules, 2015, 48, 3934—3940 |
[101] | He L., Yang X., Zhao F., Wang K., Wang Q., Liu J., Huang J., Li W., Yang M., Anal. Chem., 2015, 87, 2459—2465 |
[102] | Yan H., He L., Ma C., Li J., Yang J., Yang R., Tan W., Chem. Commun., 2014, 50, 8398—8401 |
[103] | Yan H., He L., Zhao W., Li J., Xiao Y., Yang R., Tan W., Anal. Chem., 2014, 86, 11440—11450 |
[1] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[2] | WENG Meiqi, SHANG Guiming, WANG Jiatai, LI Shenghua, FAN Zhi, LIN Song, GUO Minjie. Template Simulation of Organophosphorus Nerve Agent Molecularly Imprinted Polymers [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220136. |
[3] | DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309. |
[4] | WANG Zhengwen, GAO Fengxiang, CAO Han, LIU Shunjie, WANG Xianhong, WANG Fosong. Synthesis and Property of CO2 Copolymer⁃based UV-curable Polymer [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220236. |
[5] | JI Fa, LIU Ling, YU Linling, SUN Yan. Effects of Muco-inert and Acid-sensitive Modification on Mucosal Penetration of Nanoparticles [J]. Chem. J. Chinese Universities, 2022, 43(6): 20210837. |
[6] | GAO Wenxiu, LYU Jieqiong, GAO Yongping, KONG Changjian, WANG Xueping, GUO Shengnan, LOU Dawei. Preparation of Ethyl α⁃Cyanocinnamate Catalyzed by Nitrogen-rich Porous Organic Polymers [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220078. |
[7] | LIU Qingqing, WANG Pu, WANG Yongshuai, ZHAO Man, DONG Huanli. Synthesis and Topochemical Polymerization Study of Naphthalene/perylene Imides Substituted Diacetylene Derivatives [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220091. |
[8] | LUO Bian, ZHOU Fen, PAN Mu. Study on Preparation and Accessibility of Hierarchical Porous Carbon Supported Platinum Catalyst [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210853. |
[9] | WANG Mingfang, FU Hua, FU Zhibo, WANG Yuerong, ZHANG Hongyang, ZHANG Min, HU Ping. Separation and Characterization of Polymer Blends Using Online Ultra-high Performance Liquid Chromatography-Size Exclusion Chromatography [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210865. |
[10] | TAO Xingfu, HAN Chenglong, YANG Yang, LIU Kun. Synthesis of Aluminum Nanoparticles@Polymer Core-shell Nanostructures by Surface-initiated Polymerization [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220367. |
[11] | TANG Yuanhui, LI Chunyu, LIN Yakai, ZHANG Chunhui, LIU Ze, YU Lixin, WANG Haihui, WANG Xiaolin. Dissipative Particle Dynamics Simulation of the Effect of Polymer Chain Rigidity on Membranes Formation by Nonsolvent Induced Phase Separation Process [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220169. |
[12] | MA Jianxin, LIU Xiaodong, XU Na, LIU Guocheng, WANG Xiuli. A Multi-functional Zn(II) Coordination Polymer with Luminescence Sensing, Amperometric Sensing, and Dye Adsorption Performance [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210585. |
[13] | ZHANG Wanbin, WANG Yanmeng, WANG Shaowu, TONG Xin, HAN Xiaoqian, ZHANG Ce, ZHANG Guanghua, ZHU Xiuzhong. Synthesis of Poly(allyl glycidyl ether) Bearing Alkyl Functional Side Groups and Its Plasticizing and Antistatic Effects for PVC [J]. Chem. J. Chinese Universities, 2021, 42(9): 2961. |
[14] | LI Haibo, XIAO Changfa, JIANG Long, HUANG Yun, DAN Yi. Copolymerization of Methyl Acrylate and 1-Octene Catalyzed by the Loaded Aluminum Chloride on MCM-41 Molecular Sieve [J]. Chem. J. Chinese Universities, 2021, 42(9): 2974. |
[15] | YANG Yingjie, ZHANG Xiaorong, SUN Yuxue, LIU Jun, XIE Haiming. Synthesis of a Dual-lithium-salt Comb Polymer Electrolyte and Its Electrochemical Performance [J]. Chem. J. Chinese Universities, 2021, 42(9): 2861. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||