Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (11): 20250240.doi: 10.7503/cjcu20250240
• Physical Chemistry • Previous Articles
HOU Qingzi, WANG Kejing, LI Chunchuang, SHAO Qian, HAO Haijun(
), XU Qinghong(
)
Received:2025-08-31
Online:2025-11-10
Published:2025-09-25
Contact:
XU Qinghong
E-mail:hjhao@mail.buct.edu.cn;xuqh@mail.buct.edu.cn
Supported by:CLC Number:
TrendMD:
HOU Qingzi, WANG Kejing, LI Chunchuang, SHAO Qian, HAO Haijun, XU Qinghong. Preparation of Co2+@Zirconium-phosphonate Composite and Its Catalytic Properties on Degradation of Safranin T[J]. Chem. J. Chinese Universities, 2025, 46(11): 20250240.
| Sample | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore size/nm |
|---|---|---|---|
| Co2+@ZrDP | 19.6815 | 0.1018 | 1.5954 |
| TTFA@Co2+@ZrDP⁃1 | 7.7243 | 0.0425 | 1.3144 |
| TTFA@Co2+@ZrDP⁃2 | 63.5164 | 0.3362 | 1.5519 |
Table 1 Specific surface area, pore volume and average pore size of Co2+@ZrDP, TTFA@Co2+@ZrDP-1 and TTFA@Co2+@ZrDP⁃2
| Sample | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore size/nm |
|---|---|---|---|
| Co2+@ZrDP | 19.6815 | 0.1018 | 1.5954 |
| TTFA@Co2+@ZrDP⁃1 | 7.7243 | 0.0425 | 1.3144 |
| TTFA@Co2+@ZrDP⁃2 | 63.5164 | 0.3362 | 1.5519 |
| Time/min | Degradation rate(%) | ||||||
|---|---|---|---|---|---|---|---|
| Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5 | Cycle 6 | Cycle 7 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 99.77 | 86.87 | 83.26 | 82.36 | 72.18 | 32.49 | 28.53 |
| 10 | 99.89 | 98.26 | 98.22 | 96.28 | 95.46 | 50.71 | 46.49 |
| 15 | 99.91 | 98.39 | 98.39 | 98.31 | 98.18 | 81.96 | 69.13 |
| 20 | 99.92 | 98.30 | 98.35 | 98.35 | 98.30 | 94.52 | 87.04 |
| 25 | 99.92 | 98.39 | 98.35 | 98.27 | 98.35 | 98.89 | 96.16 |
| 30 | 99.95 | 98.39 | 98.35 | 98.35 | 98.35 | 99.87 | 98.78 |
Table 2 Degradation rate of 100 mg/L Safranine T solution degraded by PMS with different reuse time
| Time/min | Degradation rate(%) | ||||||
|---|---|---|---|---|---|---|---|
| Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5 | Cycle 6 | Cycle 7 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 99.77 | 86.87 | 83.26 | 82.36 | 72.18 | 32.49 | 28.53 |
| 10 | 99.89 | 98.26 | 98.22 | 96.28 | 95.46 | 50.71 | 46.49 |
| 15 | 99.91 | 98.39 | 98.39 | 98.31 | 98.18 | 81.96 | 69.13 |
| 20 | 99.92 | 98.30 | 98.35 | 98.35 | 98.30 | 94.52 | 87.04 |
| 25 | 99.92 | 98.39 | 98.35 | 98.27 | 98.35 | 98.89 | 96.16 |
| 30 | 99.95 | 98.39 | 98.35 | 98.35 | 98.35 | 99.87 | 98.78 |
| [1] | Mu W. J., Chen B. H., Yu Q. H., Li X. L., Wei H. Y., Yang Y. C., Peng S. M. , J. Mol. Liq., 2021, 326, 115307 |
| [2] | Fu S., Synthesis, Characterization and Catalytic Performance of a Novel Three⁃dimensional Hierarchially Zirconium Phosphonate ZrDP, Beijing University of Chemical Technology, Beijing, 2023 |
| 付山. 新型三维多孔膦酸锆ZrDP的合成、 表征及催化性能研究, 北京: 北京化工大学, 2023 | |
| [3] | Tian Y., Application Study on the Catalytic Degradation of Malachite Green by Fe(II) Coordinated Supported Zirconium Phosphonate, Beijing University of Chemical Technology, Beijing, 2024 |
| 田艺. Fe(II) 配位负载型膦酸锆催化降解孔雀石绿的应用研究, 北京: 北京化工大学, 2024 | |
| [4] | Shimomura O., Arisaka Y., Rahmawati A., Kabir S. M. M., Shizuma M., Ohtaka A., Molecules, 2024, 29(23), 5569 |
| [5] | Zeng R. Q., Fu X. K., Sui Y., Chemistry, 2006, (11), 814—821 |
| [6] | Ren Y. B., Mesoporous Zirconium Phosphonates as Drug Carriers for Oral Colon⁃specific Delivery of Biopharmaceutics, Liaoning Normal University, Dalian, 2012 |
| 任玉宝.介孔膦酸锆材料作为载体对生物药物的结肠定位传输, 大连: 辽宁师范大学, 2012 | |
| [7] | Zhou A. N., Jing N., Wang G. H., Xu Q. H., Ind. Eng. Chem. Res., 2018, 57(44), 15031—15038 |
| [8] | Wu Z. F., Liu C. H., Teng Y. L., Xu J., J. Southwest Univ.(Natural Science Edition), 2011, 33(5), 50—54 |
| 吴宗方, 刘昌华, 藤瑛丽, 徐静. 西南大学学报(自然科学版), 2011, 33(5), 50—54 | |
| [9] | Lentz L. C., Kolpak A. M., Sci. Rep., 2017, 7(1), 1248 |
| [10] | Zhou Y. J., Wang A. N., Wang Z. L., Chen M., Wang W., Sun L. Y., Liu X., RSC Advances, 2015, 5(114), 93969—93978 |
| [11] | Sudarshan S., Harikrishnan S., RathiBhuvaneswari G., Alamelu V., Aanand S., Rajasekar A., Govarthanan M., J. Appl. Microbiol., 2023, 134(2), lxac064 |
| [12] | Gao X., Pan H. B., Qiao C. F., Chen F. Y., Zhou Y., Yang W. H., Chem. J. Chinese Universities, 2020, 41(7), 1591—1599 |
| 高霞, 潘会宾, 乔成芳, 陈凤英, 周元, 杨文华. 高等学校化学学报, 2020, 41(7), 1591—1599 | |
| [13] | Sismanoglu S., Abdulmahdi S. S., Sahin K. H., Hani Y. B., Aghlara E., Akalin M. K., Int. J. Environ. Anal. Chem., 2025, 105(5), 981—1000 |
| [14] | Zhang Q., Guo Z., Yuta S. Y., Shen S., Zhou X., Zhang G., J. Environ. Chem. Eng., 2025, 13(2), 116084 |
| [15] | Zhang J. Q., Sun X. H., Gao Q. J., Wang H. X., Liang D. X., Liu Z. M., Han G. T., Jiang W., Chem. J. Chinese Universities, 2019, 40(3), 425—430 |
| 张巨擎, 孙晓晗, 高桥娇, 王海鑫, 梁大鑫, 刘志明, 韩光亭, 姜伟, 刘欢. 高等学校化学学报, 2019, 40(3), 425—430 | |
| [16] | Zeng X. C., Ye Y. T., Wu Z., Wei R. S., Liu H., Chem. J. Chinese Universities, 2024, 45(12), 20240337 |
| 曾湘楚, 叶雨婷, 武哲, 韦瑞松, 刘欢. 高等学校化学学报, 2024, 45(12), 20240337 | |
| [17] | Li J., Performance and Mechanism of Complex OMS⁃2 Catalysts Activated PMS for Degradation of Acid Orange 7, Wuhan Textile University, Wuhan, 2018 |
| 李军.复合型OMS-2活化PMS降解酸性橙7的性能与机理, 武汉: 武汉纺织大学, 2018 | |
| [18] | Sadiq M. U., Shah A., Nisar J., Shah I., Nanomaterials, 2023, 13(15), 2218 |
| [19] | Deng X. R., Xiang X. Q., Li F. L., Fan C. Y., Liu Z. H., Chen Y., Luo Z. F., J. Isot., 2012, 25(3), 160—164 |
| [20] | Xiao Z. H., Huang Y. C., Dong C. l., Xie C., Liu Z. J., Du S. Q., Chen W., Yan D. F., Tao L., Shu Z. W., Zhang G. H., Duan H. G., Wang Y. Y., Zou Y. Q., Chen R., Wang S. Y., J. Am. Chem. Soc., 2020, 142(28), 12087—12095 |
| [21] | Guo R. N., Nengzi L. C., Chen Y., Li Y. H., Zhang X. Y., Cheng X. W., Chem. Eng. J., 2020, 398, 125676 |
| [22] | Li J., Zhu J. L., Fang L. Z., Nie Y. L., Tian N., Tian X. K., Lu L. Q., Zhou Z. X., Yang C., Li Y., Sep. Purif. Technol., 2020, 240, 116617 |
| [23] | Mo Y. M., Study on the Efficiency and Mechanism of Peroxymonosulfate Activation for Rhodamine B Degradation by Copper⁃based Catalyst, South China University of Technology, Guangzhou, 2023 |
| 莫苑敏.铜基催化材料活化过一硫酸盐降解罗丹明B的效能与机理研究, 广州: 华南理工大学, 2023 | |
| [24] | Li Y. B., Chen Z. L., Qi J. Y., Kang J., Shen J. M., Yan P. W., Wang W. Q., Bi L. B., Zhang X. X., Zhu X. W., Sep. Purif. Technol., 2021, 277, 119492 |
| [25] | Zhao Y. L., Yuan X. Z., Jiang L. B., Li X. D., Zhang J. J., Wang H., Chem. Eng. J., 2020, 400, 125903 |
| [26] | Ding D. H., Yang S. J., Chen L. W., Cai T. M., Chem. Eng. J., 2020, 392, 123725 |
| [1] | TAN Ye, ZHOU Zhihong, WU You, TONG Haixia, YU Linping, ZENG Julan. Performance and Mechanism of CoFe₂O₄/Silica Aerogel in Activating Peroxymonosulfate for Tetracycline Degradation [J]. Chem. J. Chinese Universities, 2025, 46(9): 20250107. |
| [2] | WANG Chenzhu, GAO Mingkun, GAO Yanjing, QI Sixian, YU Jihong. Beta@ZIF-67 Composite for Catalytic Degradation of Polylactic Acid Plastics [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240221. |
| [3] | TIAN Zhenhua, GAO Panpan, YU Ruohong, ZHAO Wenjie. Preparation of Adsorption-degradation Collagen/ZnO Composites Based on Chrome-tanned Leather Shavings [J]. Chem. J. Chinese Universities, 2024, 45(3): 20230416. |
| [4] | DU Qing, NIU Huibin, XU Yan, ZHANG Jing, LAN Xing, HUANG Yingping, TAN Yunzhi, CHEN Xiaoting, FANG Yanfen. Mechanism of Molecular Oxygen Activation Mediated by Hydroxyl Groups on the Surface of Red Clay [J]. Chem. J. Chinese Universities, 2024, 45(3): 20230422. |
| [5] | ZENG Xiangchu, YE Yuting, WU Zhe, WEI Ruisong, LIU Huan. Intramolecular Electron Transfer Mechanism of pH-Mediated Cupric Complexes Activated Peroxymonosulfate Selective Oxidation of Aqueous Tetracycline [J]. Chem. J. Chinese Universities, 2024, 45(12): 20240337. |
| [6] | LI Yun, LI Hongyan, ZHANG Feng, XIAO Zijun, WANG Fang, CUI Jiali, YANG Qun. Preparation and Electrocatalytic Degradation Properties and Mechanism of Organic Pollutants of Solid Waste-based Aerogel Particle Electrode [J]. Chem. J. Chinese Universities, 2024, 45(10): 20240320. |
| [7] | CHANG Sihui, CHEN Tao, ZHAO Liming, QIU Yongjun. Thermal Degradation Mechanism of Bio-based Polybutylactam Plasticized by Ionic Liquids [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220353. |
| [8] | PENG Xiaoming, WU Jianqun, DAI Hongling, YANG Zhanhong, XU Li, XU Gaoping, HU Fengping. Activation of Peroxymonosulfate by Single Atom Catalysts Ni⁃N⁃C for High Efficiency Degradation of Phenol [J]. Chem. J. Chinese Universities, 2021, 42(8): 2581. |
| [9] | CHANG Shuqing, XIN Xu, HUANG Yaqi, ZHANG Xincong, FU Yanghe, ZHU Weidong, ZHANG Fumin, LI Xiaona. Pyroelectrically-induced Catalytic Performance of Zr-based MOF Under Cold-hot Alternation [J]. Chem. J. Chinese Universities, 2021, 42(8): 2558. |
| [10] | LI Dongping, LI Bin, LI Changheng, YU Xuegang, SHAN Yan, CHEN Kezheng. Synthesis and Enhanced Photocatalytic Activity of Ni5P4/g-C3N4 [J]. Chem. J. Chinese Universities, 2021, 42(4): 1292. |
| [11] | YAO Mingcai, YANG Qiang, MENG Jian, LIU Xiaojuan. Effect of Zn2+ Substituting Ga3+ on Structure and Photocatalytic Properties of Wurtzite β-CuGa1-xZnxO2 with Unequal Doping [J]. Chem. J. Chinese Universities, 2021, 42(12): 3561. |
| [12] | LI Xiaoqian, ZHANG Hua, LU Haijian, LIU Chang, LIU Qinglong, MA Xiayu, FANG Yuanping, LIANG Dapeng. Mechanism of Photocatalytic Degradation of Rhodamine B by TiO2 Nanowire Array with Internal Extraction Electrospray Ionization Mass Spectrometry [J]. Chem. J. Chinese Universities, 2020, 41(9): 2003. |
| [13] | LI Li, LI Pengfei, WANG Bo. Photocatalytic Application of Covalent Organic Frameworks [J]. Chem. J. Chinese Universities, 2020, 41(9): 1917. |
| [14] | GAO Xia,PAN Huibin,QIAO Chengfang,CHEN Fengying,ZHOU Yuan,YANG Wenhua. Construction of HRP Immobilized Enzyme Reactor Based on Hierarchically Porous Metal-organic Framework and Its Dye Degradation Application† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1591. |
| [15] | WANG Rui,XU Mei,XIE Jiawen,YE Shengying,SONG Xianliang. Effects of Hydrothermal Reaction Conditions on the Structure and Properties of Porous Spherical Bi2WO6 Photocatalyst [J]. Chem. J. Chinese Universities, 2020, 41(6): 1320. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||