Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (7): 20250011.doi: 10.7503/cjcu20250011
• Physical Chemistry • Previous Articles Next Articles
WANG Wenxin1, SHAN Yiou1, SONG Jiaxin1, FAN Xiaoqiang1(), YU Xuehua1, KONG Lian1, XIAO Xia1, XIE Zean1, ZHAO Zhen1,2(
)
Received:
2025-01-10
Online:
2025-07-10
Published:
2025-03-05
Contact:
FAN Xiaoqiang
E-mail:fanxiaoqiang1986@126.com;zhenzhao@cup.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Wenxin, SHAN Yiou, SONG Jiaxin, FAN Xiaoqiang, YU Xuehua, KONG Lian, XIAO Xia, XIE Zean, ZHAO Zhen. Synthesis of the PtxZn/MSN Catalysts and Their Propane Dehydrogenation Properties[J]. Chem. J. Chinese Universities, 2025, 46(7): 20250011.
Sample | Pt content(%) | Zn content (%) |
---|---|---|
Pt0.1Zn/MSN | 0.47 | 0.26 |
Pt0.5Zn/MSN | 0.49 | 0.45 |
Pt1.0Zn/MSN | 0.51 | 0.96 |
Table 1 Content of Zn species in PtxZn/MSN analyzed by ICP
Sample | Pt content(%) | Zn content (%) |
---|---|---|
Pt0.1Zn/MSN | 0.47 | 0.26 |
Pt0.5Zn/MSN | 0.49 | 0.45 |
Pt1.0Zn/MSN | 0.51 | 0.96 |
Sample | S | d | V |
---|---|---|---|
Pt0.1Zn/MSN | 824 | 7.39 | 1.75 |
Pt0.5Zn/MSN | 766 | 7.73 | 1.72 |
Pt1.0Zn/MSN | 761 | 6.18 | 1.36 |
Pt1.5Zn/MSN | 749 | 6.49 | 1.39 |
Table 2 Textural properties of PtxZn/MSN catalysts
Sample | S | d | V |
---|---|---|---|
Pt0.1Zn/MSN | 824 | 7.39 | 1.75 |
Pt0.5Zn/MSN | 766 | 7.73 | 1.72 |
Pt1.0Zn/MSN | 761 | 6.18 | 1.36 |
Pt1.5Zn/MSN | 749 | 6.49 | 1.39 |
Sample | Propane conversion/(%) | Propene selectivity/(%) | ID/IG | ||
---|---|---|---|---|---|
Initial | Final | Initial | Final | ||
Pt0.1Zn/MSN | 53.3 | 32.5 | 89.3 | 93.4 | 1.45 |
Pt0.5Zn/MSN | 47.9 | 45.8 | 97.0 | 97.0 | 1.29 |
Pt1.0Zn/MSN | 40.2 | 38.5 | 97.7 | 97.7 | 1.30 |
Pt1.5Zn/MSN | 36.2 | 31.6 | 96.1 | 96.1 | 0.88 |
Table 3 Propane dehydrogenation performance data of PtxZn/MSN catalysts
Sample | Propane conversion/(%) | Propene selectivity/(%) | ID/IG | ||
---|---|---|---|---|---|
Initial | Final | Initial | Final | ||
Pt0.1Zn/MSN | 53.3 | 32.5 | 89.3 | 93.4 | 1.45 |
Pt0.5Zn/MSN | 47.9 | 45.8 | 97.0 | 97.0 | 1.29 |
Pt1.0Zn/MSN | 40.2 | 38.5 | 97.7 | 97.7 | 1.30 |
Pt1.5Zn/MSN | 36.2 | 31.6 | 96.1 | 96.1 | 0.88 |
Catalyst | Feed composition | Reaction temperature/℃ | WHSV*/h-1 | Initial conversion(%) | Initial selectivity(%) | Ref. |
---|---|---|---|---|---|---|
Pt1Sn1/SiO2 | VC3H8/VHe=4∶21 | 580 | 4.7 | 66.5 | ca. 99 | [ |
Ga δ Pt0/SiO2 | VC3H8/VAr=2∶8 | 550 | 2.0 | 40.7 | ca. 98 | [ |
Pt1Zn1/SiO2 | VC3H8/VH2=1∶1 | 600 | 4.0 | 48.5 | ca. 96 | [ |
0.3Pt0.5Zn@S⁃1 | VC3H8/VN2=11∶19 | 550 | 6.5 | 37.1 | ca. 99 | [ |
Pt⁃Zn/SiO2 | VC3H8/VH2=1∶1 | 500 | — | 79.0 | ca. 92 | [ |
Pt/10Mn⁃SBA⁃15 | VC3H8/VN2=4∶8 | 590 | 9.4 | 51.2 | ca. 97 | [ |
Pt0.5Zn/MSN | VC3H88/VN2=4∶8 | 590 | 9.4 | 47.9 | ca. 98 | This work |
Table 4 Comparison of activity over the related catalysts
Catalyst | Feed composition | Reaction temperature/℃ | WHSV*/h-1 | Initial conversion(%) | Initial selectivity(%) | Ref. |
---|---|---|---|---|---|---|
Pt1Sn1/SiO2 | VC3H8/VHe=4∶21 | 580 | 4.7 | 66.5 | ca. 99 | [ |
Ga δ Pt0/SiO2 | VC3H8/VAr=2∶8 | 550 | 2.0 | 40.7 | ca. 98 | [ |
Pt1Zn1/SiO2 | VC3H8/VH2=1∶1 | 600 | 4.0 | 48.5 | ca. 96 | [ |
0.3Pt0.5Zn@S⁃1 | VC3H8/VN2=11∶19 | 550 | 6.5 | 37.1 | ca. 99 | [ |
Pt⁃Zn/SiO2 | VC3H8/VH2=1∶1 | 500 | — | 79.0 | ca. 92 | [ |
Pt/10Mn⁃SBA⁃15 | VC3H8/VN2=4∶8 | 590 | 9.4 | 51.2 | ca. 97 | [ |
Pt0.5Zn/MSN | VC3H88/VN2=4∶8 | 590 | 9.4 | 47.9 | ca. 98 | This work |
[1] | Shan Y. O., Hu H. M., Fan X. Q., Zhao Z., Phys. Chem. Chem. Phys., 2023, 25, 18609—18622 |
[2] | Grant J. T., Carrero C. A., Goeltl F., Venegas J., Mueller P., Burt S. P., Specht S. E., McDermott W. P., Chieregato A., Hermans I., Science, 2016, 354(6319), 1570—1573 |
[3] | Chen S., Chang X., Sun G. D., Zhang T. T., Xu Y. Y., Wang Y., Pei C. L., Gong J. L., Chem. Soc. Rev., 2021, 50, 3315—3354 |
[4] | Zeng L., Cheng K., Sun F. F., Fan Q. Y., Li L. Y., Zhang Q. H., Wei Y., Zhou W., Kang J. C., Zhang Q. Y., Chen M. S., Liu Q. N., Zhang L. Q., Huang J. Y., Cheng J., Jiang Z., Fu G., Wang Y., Science, 2024, 383(6686), 998—1004 |
[5] | Chernyak S. A., Corda M., Dath J., Ordomsky V. V., Khodakov A. Y., Chem. Soc. Rev., 2022, 51, 7994—8044 |
[6] | Liu Y. X., Hu H. M., Fan X. Q., Yu X. H., Kong L., Xiao X., Xie Z. A., Zhao Z., Chem. J. Chinese Universities, 2025, 46(3), 20240460 |
刘奕萱, 胡慧敏, 范晓强, 于学华, 孔莲, 肖霞, 解则安, 赵震, 高等学校化学学报, 2025, 46(3), 20240460 | |
[7] | Srisakwattana T., Watmanee S., Wannakao S., Saiyasombat C., Praserthdam P., Panpranot J., Appl. Catal. A: Gen., 2021, 615(5), 118053 |
[8] | Lian Z., Ali S., Liu T. F., Si C. W., Li B., Su D. S., ACS Catal., 2018, 8(5), 4694—4704 |
[9] | Li C. Y., Wang G. W., Chem. Soc. Rev., 2021, 50, 4359—4381 |
[10] | Siri G. J., Ramallo⁃López J. M., Casella M. L., Fierro J. L. G., Requejo F. G., Ferretti O. A., Appl. Catal. A: Gen., 2005, 278(2), 239—249 |
[11] | Deng L. D., Zhou Z. J., Shi T., Appl. Catal. A: Gen., 2020, 606(25), 117826 |
[12] | Natarajan P., Khan H. A., Jaleel A., Park D. S., Kang D. C., Yoon S., Jung K. D., J. Catal., 2020, 392, 8—20 |
[13] | Cui X. L., Ma B. F., Pan H., Xia Y., Liu L., Zhao B. F., Liang Z., Zhang L. H., Zhang Y. K., Chem. Res. Chinese Universities, 2024, 40(2), 268—271 |
[14] | Shen X. Y., Qi G. D., Liang J. W., Wang R. C., Xu J., Deng F., Chem. Res. Chinese Universities, 2024, 40(6), 935—942 |
[15] | Liu L. C., Lopez⁃Haro M. L., Lopes C. W., Meira D. M., Concepcion P., Calvino J. J., Corma A., J. Catal., 2020, 391, 11—24 |
[16] | Motagamwala A. H., Almallahi R., Wortman J., Igenegbai V. O., Linic S. J., Science, 2021, 373(6551), 217—222 |
[17] | Searles K., Chan K. W., Mendes Burak J. A., Zemlyanov D., Safonova O., Copéret C., J. Am. Chem. Soc., 2018, 140(37), 11674—11679 |
[18] | Qian R., Luo S. Z., Jing F. L., Fang W. H., Ind. Eng. Chem. Res., 2022, 61(47), 17264—17274 |
[19] | Chen S., Zhao Z. J., Mu R. T., Chang X., Luo J., Purdy S. C., Kropf A. J., Sun G. D., Pei C. L., Miller J. T., Zhou X. H., Vovk E., Yang Y., Gong J. L., Chem, 2021, 7(2), 387—405 |
[20] | Han S.W., Park H., Han J. H., Kim J. C., Lee J., Jo C., Ryoo R., ACS Catal., 2021, 11(15), 9233—9241 |
[21] | Zhang L. K., Ma Y., Liu C. C., Wan Z. P., Zhai C. W., Wang X., Xu H., Guang Y. J., Wu P., Chinese J. Catal., 2023, 55, 241—252 |
[22] | Wang Y. S., Hu Z. P., Lv X. W., Chen L., Yuan Z. Y., J. Catal., 2020, 385, 61—69 |
[23] | Ye C. L., Peng M., Wang Y. H., Zhang N. Q., Wang D. S., Jiao M. L., Miller J. T., ACS Appl. Mater. Interfaces, 2020, 12(23), 25903—25909 |
[24] | Docherty S. R., Rochlitz L., Payard P. A., Copéret C., Chem. Soc. Rev., 2021, 50, 5806—5822 |
[25] | Fan X. Q., Yang Y., Song J. X., Shan Y. O., Yu X. H., Kong L., Xiao X., Xie Z. A., Zhao Z., Appl. Catal. A: Gen., 2024, 670(25), 119559 |
[26] | Fan X. Q., Liu D. D., Sun X. Y., Yu X. H., Li D., Yang Y., Liu H. Y., Diao J. Y., Xie Z. A., Kong L., Xiao X., Zhao Z., J. Catal., 2020, 389, 450—460 |
[27] | Martinelli A., Creci S., Vavra S., Carlsson P., Skoglundh M., Phys. Chem. Chem. Phys., 2020, 22, 1640—1654 |
[28] | Evaristo L., Silveira R., Tissot M., Hippler G., Moulton B., Buchner S., Int. J. Appl. Glass Sci., 2022, 14(2), 240—246 |
[29] | Ferri L. D., Lorenzi A., Lottici P. P., J. Raman Spectrosc., 2016, 47(6), 699—705 |
[30] | Han Z. P., Li S. R., Jiang F., Wang T., Ma X. B., Gong J. L., Nanoscale, 2014, 6, 10000—10008 |
[31] | Gao X. Q., Li W. C., Qiu B., Sheng J., Wu F., Lu A. H., J. Energy Chem., 2022, 70, 332—339 |
[32] | Zhang Y. N., Zhang X. Y., Yang P. F., Gao M. Y., Feng J. T., Li D. Q., Appl. Catal. B: Environ., 2021, 298(5), 120634 |
[33] | Deng L. D., Arakawa T., Ohkubo T., Miura H., Shishido T., Hosokawa S., Teramura K., Tanaka T., Ind. Eng. Chem. Res., 2017, 56(25), 7160—7172 |
[34] | Li Y. M., Mn Y. J., Zhang Q. Y., Kondratenko V. A., Jiang G. L., Sun H. Q., Han S. L., Wang Y. J., Cui G. Q., Zhou M. X., Huan Q., Zhao Z., Xu C. M., Jiang G. Y., Kondratenko E. V., J. Catal., 2023, 418, 290—299 |
[35] | Iida T., Zanchet D., Ohara K., Wakihara T., Leshkov Y. R., Angew. Chem. Int. Ed. Engl., 2018, 57(22), 6454—6458 |
[36] | Wang Y. N., Sun X. H., Yu X. H., Zhang R. J., Yan B. H., Appl. Catal. B: Environ., 2023, 337(15), 123010 |
[1] | LIU Yixuan, HU Huimin, FAN Xiaoqiang, YU Xuehua, KONG Lian, XIAO Xia, XIE Zean, ZHAO Zhen. Preparation of Pt/Mn-silicalite-1 Catalysts and Their Catalytic Performance for Propane Dehydrogenation [J]. Chem. J. Chinese Universities, 2025, 46(3): 20240460. |
[2] | WANG Jun, DU Shiqian, TAO Li. Recent Progress of Catalysts in the High Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220722. |
[3] | MA Wenlong, GUO Zhuang, ZHANG Wei, CHEN Mingxing. Preparation and Performance of PP/PMIA@PVDF-HFP Composite Air Filter Material [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230344. |
[4] | JIANG Shenghan, CAO Changlin, XIAO Liren, YANG Tang, QIAN Qingrong, CHEN Qinghua. Preparation of Composite Semiconductor Micro-sheets with UV Shielding Performance and Its Application in Polypropylene [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220071. |
[5] | HU Huimin, CUI Jing, LIU Dandan, SONG Jiaxin, ZHANG Ning, FAN Xiaoqiang, ZHAO Zhen, KONG Lian, XIAO Xia, XIE Zean. Influence of Different Transition Metal Decoration on the Propane Dehydrogenation Performance over Pt/M-DMSN Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210815. |
[6] | ZHOU Chengsi, ZHAO Yuanjin, HAN Meichen, YANG Xia, LIU Chenguang, HE Aihua. Regulation of Silanes as External Electron Donors on Propylene/butene Sequential Polymerization [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220290. |
[7] | DU Bin, CHEN Shangtao, ZHANG Fengbo, SHI Xingbo, LI Rongbo. Nonlinear Rheological Behavior of Long Chain Branching Polypropylene [J]. Chem. J. Chinese Universities, 2021, 42(6): 2034. |
[8] | HUANG Huilong, HUANG Hanxiong. Low-temperature Impact Behavior of Droplet on Injection-compression Molded Nanostructured PP/POE Blend Surfaces [J]. Chem. J. Chinese Universities, 2021, 42(10): 3195. |
[9] | HUANG Pai, ZHOU Guangyuan, LIU Bo, WANG Lei, ZHANG Jiaqi. Support Effect of Nanosized Hierarchical Silicalite-1 Zeolite on the Properties of Ziegler-Natta Catalyzed Polypropylene [J]. Chem. J. Chinese Universities, 2020, 41(9): 2025. |
[10] | AN Yue, HUANG Hanxiong. Condensate Microdrop Dynamic Behavior on Injection-compression Molded Bionic Polypropylene Nanosurfaces [J]. Chem. J. Chinese Universities, 2020, 41(8): 1888. |
[11] | WANG Huan, SUO Jinquan, WANG Chunyan, WANG Runwei. Glucose Oxidase Immobilization with Amino Dendritic Mesoporous Silica Nanoparticles and Its Application in Glucose Detection [J]. Chem. J. Chinese Universities, 2020, 41(8): 1731. |
[12] | LIU Xuan, LIU Haoyu, LI Yifeng, ZHAO Jiaohong, YANG Rui. Infectious Effect of Organic Small Molecules on Photo-oxidative Aging of Polypropylene [J]. Chem. J. Chinese Universities, 2020, 41(12): 2838. |
[13] | MA Yaping, ZHANG Ning, ZHENG Weiping, XIAO Weijia, LIU Chenguang, HE Aihua, SHAO Huafeng. Structures and Properties of Isotactic Polypropylene/Polybutene-1 In-reactor Alloys [J]. Chem. J. Chinese Universities, 2020, 41(12): 2851. |
[14] | WANG Xinghuo,TANG Jun,YANG Yingwei. Mesoporous Silica Nanoparticles-Based Stimuli-Responsive Drug Delivery Systems Gated by Polymers † [J]. Chem. J. Chinese Universities, 2020, 41(1): 28. |
[15] | SHAO Lu,LIANG Chunchao,XU Sheng,MI Puke,WANG Tinglan,YI Jianjun. Synthesis of Methylene-bridged Binuclear Metallocene Complexes and Application for Propylene Syndiospecific Polymerization† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1324. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||