Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (12): 2851.doi: 10.7503/cjcu20200277
• Polymer Chemistry • Previous Articles
MA Yaping, ZHANG Ning, ZHENG Weiping, XIAO Weijia, LIU Chenguang(), HE Aihua(), SHAO Huafeng
Received:
2020-05-21
Online:
2020-12-10
Published:
2020-12-09
Contact:
HE Aihua
E-mail:liuchenguang@qust.edu.cn;aihuahe@iccas.ac.cn
CLC Number:
TrendMD:
MA Yaping, ZHANG Ning, ZHENG Weiping, XIAO Weijia, LIU Chenguang, HE Aihua, SHAO Huafeng. Structures and Properties of Isotactic Polypropylene/Polybutene-1 In-reactor Alloys[J]. Chem. J. Chinese Universities, 2020, 41(12): 2851.
Sample | MFRa(g/10 min) | 10-4Mwb | Mw/Mnb | Isotacticityc(%) | mmmm of PBd(%) | PPe(%) |
---|---|---|---|---|---|---|
iPB | 0.47 | 67.9 | 5.3 | 97.5 | 95.6 | — |
AlloyA | 0.40 | 94.2 | 7.4 | 95.4 | 92.3 | 6.3 |
AlloyB | 0.70 | 89.2 | 7.5 | 96.4 | 95.4 | 20.8 |
Sample | MFRa(g/10 min) | 10-4Mwb | Mw/Mnb | Isotacticityc(%) | mmmm of PBd(%) | PPe(%) |
---|---|---|---|---|---|---|
iPB | 0.47 | 67.9 | 5.3 | 97.5 | 95.6 | — |
AlloyA | 0.40 | 94.2 | 7.4 | 95.4 | 92.3 | 6.3 |
AlloyB | 0.70 | 89.2 | 7.5 | 96.4 | 95.4 | 20.8 |
Component | Fractionation temperature/℃ | Mass fraction(%) | Dyad sequence distribution(%) | [B](%) | [P](%) | mmmm(%) | 10-4Mw | Mw/Mn | Tm/℃ | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[BB] | [PB] | [PP] | PB | PP | PB | PP | |||||||
aPB | -30 | 8.2 | 100 | 0 | 0 | 100 | 0 | 55.9 | |||||
-20―20 | 3.4 | 100 | 0 | 0 | 100 | 0 | |||||||
mPB | 30 | 8.5 | 100 | 0 | 0 | 100 | 0 | 92.0 | 74.1 | 12.1 | 111.0 | ||
40 | 1.0 | 100 | 0 | 0 | 100 | 0 | 109.0 | ||||||
iPB | 50 | 31.4 | 100 | 0 | 0 | 100 | 0 | 88.4 | 69.8 | 6.6 | 116.8 | ||
60 | 39.6 | 100 | 0 | 0 | 100 | 0 | 82.3 | 7.1 | 118.9 | ||||
70 | 2.0 | 100 | 0 | 0 | 100 | 0 | 92.3 | 77.1 | 5.3 | 114.7 | |||
PB?b?PP | 80 | 0.8 | 86.3 | 6.9 | 106.3 | 137.8 | |||||||
copolymer | 90 | 0.5 | 78.9 | 6.8 | 14.3 | 82.3 | 17.7 | 96.7 | 113.6 | 152.0 | |||
100 | 1.4 | 51.7 | 3.3 | 45.1 | 53.3 | 46.7 | 88.8 | 90.1 | 50.6 | 29.7 | 110.9 | 157.0 | |
110 | 1.2 | 32.4 | 15.8 | ||||||||||
120 | 0.9 | 114.4 | 160.2 | ||||||||||
130 | 0.8 | ||||||||||||
iPP | 140 | 0.3 |
Component | Fractionation temperature/℃ | Mass fraction(%) | Dyad sequence distribution(%) | [B](%) | [P](%) | mmmm(%) | 10-4Mw | Mw/Mn | Tm/℃ | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[BB] | [PB] | [PP] | PB | PP | PB | PP | |||||||
aPB | -30 | 8.2 | 100 | 0 | 0 | 100 | 0 | 55.9 | |||||
-20―20 | 3.4 | 100 | 0 | 0 | 100 | 0 | |||||||
mPB | 30 | 8.5 | 100 | 0 | 0 | 100 | 0 | 92.0 | 74.1 | 12.1 | 111.0 | ||
40 | 1.0 | 100 | 0 | 0 | 100 | 0 | 109.0 | ||||||
iPB | 50 | 31.4 | 100 | 0 | 0 | 100 | 0 | 88.4 | 69.8 | 6.6 | 116.8 | ||
60 | 39.6 | 100 | 0 | 0 | 100 | 0 | 82.3 | 7.1 | 118.9 | ||||
70 | 2.0 | 100 | 0 | 0 | 100 | 0 | 92.3 | 77.1 | 5.3 | 114.7 | |||
PB?b?PP | 80 | 0.8 | 86.3 | 6.9 | 106.3 | 137.8 | |||||||
copolymer | 90 | 0.5 | 78.9 | 6.8 | 14.3 | 82.3 | 17.7 | 96.7 | 113.6 | 152.0 | |||
100 | 1.4 | 51.7 | 3.3 | 45.1 | 53.3 | 46.7 | 88.8 | 90.1 | 50.6 | 29.7 | 110.9 | 157.0 | |
110 | 1.2 | 32.4 | 15.8 | ||||||||||
120 | 0.9 | 114.4 | 160.2 | ||||||||||
130 | 0.8 | ||||||||||||
iPP | 140 | 0.3 |
Component | Fractionation temperature/℃ | Mass fraction(%) | Dyad sequence distribution(%) | [B](%) | [P](%) | mmmm(%) | 10-4Mw | Mw/Mn | Tm/℃ | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[BB] | [PB] | [PP] | PB | PP | PB | PP | |||||||
aPB | -30 | 1.2 | 100 | 0 | 0 | 100 | 0 | 41.4 | |||||
-20—20 | 0.3 | ||||||||||||
mPB | 30 | 0.2 | 100 | 0 | 0 | 100 | 0 | ||||||
40 | 0.8 | 100 | 0 | 0 | 100 | 0 | 90.2 | 97.7/106.1 | |||||
iPB | 50 | 46.5 | 100 | 0 | 0 | 90.5 | 84.7 | 5.8 | 116.5 | ||||
60 | 37.2 | 91.1 | 106.4 | 4.3 | 116.1 | ||||||||
70 | 2.3 | 100 | 0 | 0 | 100 | 0 | 98.4 | 113.1 | 4.4 | 118.1 | |||
PB?b?PP | 80—90 | 0.4 | 52.1 | 9.1 | 38.8 | 56.6 | 43.4 | 69.3 | 22.1 | 116.9 | 144.7/152.9 | ||
copolymer | 100 | 1.6 | 34.3 | 6.0 | 59.7 | 37.2 | 62.8 | 87.7 | 92.1 | 58.9 | 28.3 | 116.6 | 158.3 |
110 | 1.3 | 11.5 | 3.9 | 84.6 | 13.5 | 86.5 | 88.4 | 95.0 | 43.8 | 15.6 | 117.3 | 162.6 | |
120 | 5.0 | 4.4 | 6.9 | 88.7 | 7.9 | 92.1 | 91.6 | 39.1 | 5.7 | 116.3 | 165.2 | ||
130 | 0.4 | 8.8 | 0 | 91.2 | 8.8 | 91.2 | 87.7 | 113.1 | 164.8 | ||||
iPP | 140 | 2.8 | 0 | 0 | 100 | 0 | 100 | 92.0 | 37.7 | 5.6 | 164.6 |
Component | Fractionation temperature/℃ | Mass fraction(%) | Dyad sequence distribution(%) | [B](%) | [P](%) | mmmm(%) | 10-4Mw | Mw/Mn | Tm/℃ | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[BB] | [PB] | [PP] | PB | PP | PB | PP | |||||||
aPB | -30 | 1.2 | 100 | 0 | 0 | 100 | 0 | 41.4 | |||||
-20—20 | 0.3 | ||||||||||||
mPB | 30 | 0.2 | 100 | 0 | 0 | 100 | 0 | ||||||
40 | 0.8 | 100 | 0 | 0 | 100 | 0 | 90.2 | 97.7/106.1 | |||||
iPB | 50 | 46.5 | 100 | 0 | 0 | 90.5 | 84.7 | 5.8 | 116.5 | ||||
60 | 37.2 | 91.1 | 106.4 | 4.3 | 116.1 | ||||||||
70 | 2.3 | 100 | 0 | 0 | 100 | 0 | 98.4 | 113.1 | 4.4 | 118.1 | |||
PB?b?PP | 80—90 | 0.4 | 52.1 | 9.1 | 38.8 | 56.6 | 43.4 | 69.3 | 22.1 | 116.9 | 144.7/152.9 | ||
copolymer | 100 | 1.6 | 34.3 | 6.0 | 59.7 | 37.2 | 62.8 | 87.7 | 92.1 | 58.9 | 28.3 | 116.6 | 158.3 |
110 | 1.3 | 11.5 | 3.9 | 84.6 | 13.5 | 86.5 | 88.4 | 95.0 | 43.8 | 15.6 | 117.3 | 162.6 | |
120 | 5.0 | 4.4 | 6.9 | 88.7 | 7.9 | 92.1 | 91.6 | 39.1 | 5.7 | 116.3 | 165.2 | ||
130 | 0.4 | 8.8 | 0 | 91.2 | 8.8 | 91.2 | 87.7 | 113.1 | 164.8 | ||||
iPP | 140 | 2.8 | 0 | 0 | 100 | 0 | 100 | 92.0 | 37.7 | 5.6 | 164.6 |
Sample | Tensile strength/MPa | Elongation at break(%) | Flexural strength/MPa | Flexural modulus/MPa | Impact strength/(kJ?m-2) | Vicat softening temperature/℃ |
---|---|---|---|---|---|---|
iPB | 31.4±1.9 | 276.5±15.4 | 8.6±0.3 | 182.3±12.3 | 23.6±2.9 | 84.9 |
Alloy A | 33.9±1.4 | 279.3±8.3 | 11.4±0.7 | 243.6±27.4 | 22.8±1.2 | 92.7 |
Alloy B | 37.0±2.7 | 299.1±24.1 | 14.3±0.8 | 293.7±23.9 | 24.0±3.1 | 91.0 |
Sample | Tensile strength/MPa | Elongation at break(%) | Flexural strength/MPa | Flexural modulus/MPa | Impact strength/(kJ?m-2) | Vicat softening temperature/℃ |
---|---|---|---|---|---|---|
iPB | 31.4±1.9 | 276.5±15.4 | 8.6±0.3 | 182.3±12.3 | 23.6±2.9 | 84.9 |
Alloy A | 33.9±1.4 | 279.3±8.3 | 11.4±0.7 | 243.6±27.4 | 22.8±1.2 | 92.7 |
Alloy B | 37.0±2.7 | 299.1±24.1 | 14.3±0.8 | 293.7±23.9 | 24.0±3.1 | 91.0 |
1 | Luciani L., Seppala J., Lofgren B., Prog. Polym. Sci.,1988, 13(1), 37—62 |
2 | Zhang Y. F., Sun Z. B., Shao H. F., Polym. Mater. Sci. Eng., 2018, 34(10), 105—109(张跃发, 孙照博, 邵华锋. 高分子材料科学与工程, 2018, 34(10), 105—109) |
3 | Ma Y. P., Shao H. F., He A. H., Polym. Mater. Sci. Eng., 2016, 32(8), 86—92(马亚萍, 邵华锋, 贺爱华. 高分子材料科学与工程, 2016, 32(8), 86—92) |
4 | Shao H. F., Wang S. L., He A. H., Polym. Bull., 2016, 73(11), 3209—3220 |
5 | Shao H. F., Ma Y. P., Nie H. R., He A. H., Chinese J. Polym. Sci., 2016, 34(9), 1141—1149 |
6 | Ma Y. P., Zheng W. P., Liu C. G., Shao H. F., Nie H. R., He A. H., Chinese J. Polym. Sci., 2020, 38(2), 164—173 |
7 | He A. H., Xu C. S., Shao H. F., Yao W., Huang B. C., Polym. Degrad. Stabil., 2010, 95(9), 1443—1448 |
8 | Shao H. F., Li L. G., Wang Z. D., He A. H., Huang B. C., Mater. Lett., 2012, 73(15), 24—27 |
9 | Lu D. P., Guan R., Polym. Int., 2000, 49(11), 1389—1394 |
10 | Xanthos M., Science, 2012, 337(6095), 700—702 |
11 | Danesi S., Porter R. S., Polymer, 1978, 19(4), 448—457 |
12 | Li Y. M., Wei G. X., Sue H. J., Polym. Eng. Sci., 2000, 40(9), 1979—1988 |
13 | Chen Y. H., Yang S., Yang H. Q., Zhang M., Zhang Q. Y., Li Z. M., Ind. Eng. Chem. Res., 2016, 55(32), 8733—8742 |
14 | George S., Varughese K. T., Thomas S., Polymer, 2000, 41(14), 5485—5503 |
15 | Ren Q., Fan J. S., Zhang Q. L., Yi J. J., Feng J. C., Mater. Design., 2016, 107(5), 295—301 |
16 | Shi S. H., Zhang X., Liu Y. S., Nie M., Wang Q., Compos. Sci. Technol., 2016, 135, 76—82 |
17 | Xiao W. J., Liu C. G., China Plastics, 2017, 31(9), 56—61(肖玮佳, 刘晨光. 中国塑料, 2017, 31(9), 56—61) |
18 | Wang C. X., Shao H. F., He A. H., Plastics, 2015, 44(1), 40—42(王彩霞, 邵华锋, 贺爱华. 塑料, 2015, 44(1), 40—42) |
19 | Shao H. F., Wang S. L., Dong X., He A. H., J. Macromol. Sci. Phys., 2018, 57(9), 608—623 |
20 | Shao H. F., Wang S. L., Dong X., He A. H., Chinese J. Polym. Sci., 2016, 34(2), 174—184 |
21 | Doufnoune R., Baouz T., Bouchareb S., J. Adhes. Sci. Technol., 2019, 33(16), 1729—1757 |
22 | Siegmann A., J. Appl. Polym. Sci., 1982, 27(3), 1053—1056 |
23 | Shieh Y. T., Lee M. S., Chen S. A., J. Polym. Sci. Pol. Phys., 2002, 40(7), 638—648 |
24 | Lee M. S., Chen S. A., J. Polym. Res., 1996, 3(4), 235—258 |
25 | Ji Y. X., Su F. M., Cui K. P., Huang N. D., Qi Z. M., Li L. B., Macromolecules, 2016, 49(5), 1761—1769 |
26 | Cham P. M., Lee T. H., Marand H., Macromolecules, 1994, 27(15), 4263—4273 |
27 | Xu Y., Liu C. G., Nie H. R., He A. H., Chinese J. Polym. Sci., 2018, 36(7), 859—865 |
28 | Xu Y., Ma Y. P., Liu C. G., Men Y. F., He A. H., Polymer, 2019, 182, 121817 |
29 | Lee M. S., Chen S. A., J. Polym. Sci., Part C: Polym. Lett., 1987, 25(1), 37—43 |
30 | Wasiak A., Wenig W., Colloid Polym. Sci., 1984, 262(6), 435—444 |
31 | Siegmann A., Appl. Polym. Sci., 1979, 24(12), 2333—2345 |
32 | Lotz B., Mathieu C., Thierry A., Lovinger A. J., De Rosa C., Ruiz de Ballesteros O., Auriemma F., Macromolecules, 1998, 31(26), 9253—9257 |
33 | Shieh Y. T., Lee M. S., Chen S. A., Polymer, 2001, 42(9), 4439—4448 |
34 | Subramanian M. N., Polymer Blends and Composites: Chemistry and Technology, John Wiley & Sons, Inc. Press, New York, 2017, 5, 114—119 |
35 | Manson J. A., Sperling L. H., Polymer Blends and Composites: Diblock and Triblock Copolymers, Plennun Press, New York, 1976, 4, 124—129 |
36 | Char K., Brown H. R., Deline V. R., Macromolecules, 1993, 26(16), 4164—4171 |
37 | Sikka M., Pellegrini N. N., Schmitt E. A., Winey K. I., Macromolecules, 1997, 30(3), 445—455 |
38 | Shao H. F., Li L. G., Wang Z. D., He A. H., Huang B. C., Mater. Lett., 2012,73(15), 24—27 |
39 | Nie H. R., Xiao W. J., Ma Y. P., Liu C. G., He A. H., Ind. Eng. Chem. Res., 2019, 58(16), 6919—6924 |
40 | Jiang B. Y., Shao H. F., Nie H. R., He A. H., J. Polym. Sci., Part A: Polym. Chem., 2015,6(17), 3315—3323 |
41 | He A. H., Zheng W. P., Shi Y. W., Liu C. G., Yao W., Huang B. C., Polym. Int., 2012,61(10), 1575—1581 |
42 | He A. H., Shi Y. W., Liu C. G., Yao W., Huang B. C., Chinese J. Polym. Sci., 2012, 30(5), 632—641 |
43 | Shao H. F., Ren S. T., Wang R. G., He A. H., Polymer, 2020, 186, 122015 |
44 | Zheng W. P., Du D. L., He A. H., Ma Y. P., Shao H. F., Liu C. G., Hsiao B. S., Mater. Today Commun., 2020, 23, 100868 |
45 | Xue Y. H., Liu W., Li P., Men Y. F., Bo S. Q., Ji X. L., Ind. Eng. Chem. Res., 2019, 58(36), 16869—16876 |
46 | Shirayama K., Okada T., Kita S. I., J. Polym. Sci., Part A: Polym. Chem., 1965, 3(3), 907—916 |
47 | Fan Y. D., Zhang C. Y., Xue Y. H., Zhang X. Q., Ji X. L., Bo S. Q., Polymer, 2011, 52(2), 557—563 |
48 | Xue Y. H., Yang H. R., Bo S. Q., Ji X. L., Acta Poly. Sin., 2014, 12, 1576—1584(薛彦虎, 杨贺然, 薄淑琴, 姬相玲. 高分子学报, 2014, 12, 1576—1584) |
49 | Ma Y. P., Zhang N., Zheng W. P., He A. H., Liu C. G., Chinese J. Polym. Sci., 2020, doi: 10.1007/s10118⁃020⁃2468⁃9 |
50 | Asakura T., Demura M., Nishiyama Y., Macromolecules, 1991, 24(9), 2334—2340 |
51 | Randall J. A., Macromolecules, 1978, 11(3), 592—597 |
52 | Abiru T., Mizuno A., Weigand F., J. Appl. Polym. Sci., 1998, 68(9), 1493—1501 |
53 | GB/T 1040⁃2006, Plastics⁃Determination of Tensile Properties, Standards Press of China, Beijing, 2006(中国国家标准化管理委员会, GB/T 1040⁃2006, 塑料拉伸性能的测定, 北京: 中国标准出版社, 2006) |
54 | GB/T 9341⁃2008, Plastics⁃Determination of Flexural Properties, Standards Press of China, Beijing, 2008(中国国家标准化管理委员会, GB/T 9341⁃008, 塑料弯曲性能的测定, 北京: 中国标准出版社, 2008) |
55 | GB/T 1843⁃2008, Plastics⁃Determination of Izod Impact Strength, Standards Press of China, Beijing, 2008(中国国家标准化管理委员会, GB/T 1843⁃2008, 悬臂梁冲击强度的测定, 北京: 中国标准出版社, 2008) |
56 | Lee K. H., Givens S. R., Snively C. M., Givens S., Chase D. B., Rabolt J. F., Macromolecules, 2007, 40(7), 2590—2595 |
[1] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[2] | JIANG Bowen, CHEN Jingxuan, CHENG Yonghua, SANG Wei, KOU Zongkui. Recent Progress of Single-atom Materials in Electrochemical Biosensing [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220334. |
[3] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[4] | LI Lin, QI Fenglian, QIU Lili, MENG Zihui. Dynamic Amorphous Photonic Structure Patterns Assembled by Hexagonal Magnetic Nanosheets [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220123. |
[5] | LUO Xinyan, JIA Ruonan, XIANG Yong, ZHANG Xiaokun. Progress on the Stretchable Composite Solid Polymer Electrolytes [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220149. |
[6] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[7] | GAO Jian, FENG Yiyu, FANG Wenyu, WANG Hui, GE Jing, FENG Wei. Alkane Grafted Phase Change Azobenzene Materials Based on Low Temperature Heat Release [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220146. |
[8] | WU Yushuai, SHANG Yingxu, JIANG Qiao, DING Baoquan. Research Progress of Controllable Self-assembled DNA Origami Structure as Drug Carrier [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220179. |
[9] | YANG Dan, LIU Xu, DAI Yihu, ZHU Yan, YANG Yanhui. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220198. |
[10] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[11] | SHI Naike, ZHANG Ya, SANSON Andrea, WANG Lei, CHEN Jun. Uniaxial Negative Thermal Expansion and Mechanism in Zn(NCN) [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220124. |
[12] | LIU Qingqing, WANG Pu, WANG Yongshuai, ZHAO Man, DONG Huanli. Synthesis and Topochemical Polymerization Study of Naphthalene/perylene Imides Substituted Diacetylene Derivatives [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220091. |
[13] | ZHU Kai, LI Jie, WU Xiaoyi, HU Weiwei, WU Dongmei, YU Chengxiao, GE Zhiwei, YE Xingqian, CHEN Shiguo. Combined PGC-Triple-Tof-MS Enables the Separation, Identification of Sugar Beet Pectin Derived Oligomers [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220023. |
[14] | CHEN Weiqin, LYU Jiamin, YU Shen, LIU Zhan, LI Xiaoyun, CHEN Lihua, SU Baolian. Preparation of Organic Hybrid Mesoporous Beta Zeolite for Alkylation of Mesitylene with Benzyl Alcohol [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220086. |
[15] | GU Yu, XI Baojuan, LI Jiangxiao, XIONG Shenglin. Structure Regulation of Single-atom Catalysts in Oxygen Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220036. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||