Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (4): 20240485.doi: 10.7503/cjcu20240485
• Physical Chemistry • Previous Articles Next Articles
ZHENG Na, NIE Lijun, GAO Yuhang, XUE Kunkun, HAN Xiaobei, MA Yueyu, REN Lirong, SU Wangchao, SHI Jianhui()
Received:
2024-10-25
Online:
2025-04-10
Published:
2025-01-08
Contact:
SHI Jianhui
E-mail:shijianhui@tyut.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHENG Na, NIE Lijun, GAO Yuhang, XUE Kunkun, HAN Xiaobei, MA Yueyu, REN Lirong, SU Wangchao, SHI Jianhui. H3PO4 Protonation-modified g-C3N4 and Its Photocatalytic H2O2 Production Properties[J]. Chem. J. Chinese Universities, 2025, 46(4): 20240485.
Photocatalyst | Condition | Solvent system | H2O2 production/(μmol·h-1·g-1) | Ref. |
---|---|---|---|---|
PBCN10⁃D | 300 W xenon lamp, λ>420 nm, air | Ethanol/H2O(1∶4, volume ratio) | 1008 | This work |
SPCN | 300 W white⁃light light, λ>420 nm, air | Isopropanol/H2O(1∶9, volume ratio) | 323.6 | [ |
g⁃C3N4/In2S3 | 300 W xenon lamp, λ>420 nm, air | Water | 92 | [ |
KDCN⁃0.2 | 300 W xenon lamp, λ>420 nm, air | Isopropanol/H2O(1∶9, volume ratio) | 278.9 | [ |
NB⁃400 | 300 W xenon lamp, λ>420 nm, air | Isopropanol/H2O(1∶9, volume ratio) | 455 | [ |
NDCN | 300 W xenon lamp, λ>420 nm, O2 | Isopropanol/H2O(1∶9, volume ratio) | 476 | [ |
SCN5 | 300 W xenon lamp, λ>420 nm, air | Isopropanol/H2O(1∶10, volume ratio) | 703.4 | [ |
CNK0.2 | 300 W xenon lamp, λ>420 nm, O2 | Methanol/H2O(1∶19, volume ratio) | 1010 | [ |
Table 1 Comparison for H2O2 production with other photocatalysts
Photocatalyst | Condition | Solvent system | H2O2 production/(μmol·h-1·g-1) | Ref. |
---|---|---|---|---|
PBCN10⁃D | 300 W xenon lamp, λ>420 nm, air | Ethanol/H2O(1∶4, volume ratio) | 1008 | This work |
SPCN | 300 W white⁃light light, λ>420 nm, air | Isopropanol/H2O(1∶9, volume ratio) | 323.6 | [ |
g⁃C3N4/In2S3 | 300 W xenon lamp, λ>420 nm, air | Water | 92 | [ |
KDCN⁃0.2 | 300 W xenon lamp, λ>420 nm, air | Isopropanol/H2O(1∶9, volume ratio) | 278.9 | [ |
NB⁃400 | 300 W xenon lamp, λ>420 nm, air | Isopropanol/H2O(1∶9, volume ratio) | 455 | [ |
NDCN | 300 W xenon lamp, λ>420 nm, O2 | Isopropanol/H2O(1∶9, volume ratio) | 476 | [ |
SCN5 | 300 W xenon lamp, λ>420 nm, air | Isopropanol/H2O(1∶10, volume ratio) | 703.4 | [ |
CNK0.2 | 300 W xenon lamp, λ>420 nm, O2 | Methanol/H2O(1∶19, volume ratio) | 1010 | [ |
1 | Zhou W., Meng X. X., Gao J. H., Alshawabkeh A. N., Chemosphere, 2019, 225, 588—607 |
2 | Balakrishnan A., Vijaya Suryaa K., Tripathy H., Trivedi S., Kumar A., Chinthala M., J. Colloid Interface Sci., 2024, 663, 1087—1098 |
3 | Ma L., X., Gao Y. P., Wei B. Q., Huang L., Zhang N., Weng Q., Zhang L., Liu S. F., Jiang R. I., ACS Catal., 2024, 14(4), 2775—2786 |
4 | Zeng X. K., Wang T. Y., Wang Z. Y., Tebyetekerwa M., Liu Y., Liu Z. Y., Wang G., Wibowo A. A., Pierens G., Gu Q. F., Zhang X. W., ACS Catal., 2024, 14(13), 9955—9968 |
5 | Ji R., Dong Y. M., Sun X. Y., Pan C. S., Yang Y. F., Zhao H., Zhu Y. F., Appl. Catal. B, 2024, 349, 123884 |
6 | Chai S. M., Chen X. W., Zhang X. R., Fang Y. X., Sprick R. S., Chen X., Environ. Sci. Nano, 2022, 9(7), 2464—2469 |
7 | Yang J., Jing J. F., Li W. L., Zhu Y. F., Adv. Sci., 2022, 9(17), 2201134 |
8 | Xue W. J., Huang D. L., Zeng G. M., Wan J., Zhang C., Xu R., Cheng M., Deng R., J. Hazard. Mater., 2018, 341, 381—389 |
9 | Zhang L. S., Ding N., Hashimoto M., Iwasaki K., Chikamori N., Nakata K., Xu Y. Z., Shi J. J., Wu H. J., Luo Y. H., Li D. M., Fujishima A., Meng Q. B., Nano Res., 2018, 11(4), 2295—2309 |
10 | Zhang J., Zhang M., Lin L., Wang X., Angew Chem. Int. Ed., 2015, 54(21), 6297—6301 |
11 | Zhang Y. J., Antonietti M., Chem. J., 2010, 5(6), 1307—1311 |
12 | Kumar A., Kashyap S., Sharma M., Krishnan V., Chemosphere, 2022, 287, 131988 |
13 | Ye M., Wei W., Zheng L. H., Liu Y. Z., Wu D. W., Gu X. Y., Wei A., J. Hazard. Mater., 2019, 365, 674—683 |
14 | Wang K. C., Song S. W., Zhang Q. F., Jin Y. H., Zhang Q. H., Chem. Commun., 2019, 55(51), 7414—7417 |
15 | Ma L. L., Fan H. Q., Fu K., Lei S. H., Hu Q. Z., Huang H. T., He G. P., ACS Sustainable Chem. Eng., 2017, 5, 7093—7103 |
16 | Wang J. L., Chen B. Q., Zeng F. H., Lu X. F., Hou Y. D., Lin W., Yang C., J. Mater. Chem. A, 2024, 12(24), 14508—14516 |
17 | He F. T., Lu Y. M., Wu Y. Z., Wang S. L., Zhang Y., Dong P., Wang Y. Q., Zhao C. C., Wang S. J., Zhang J. Q., Wang S. B., Adv. Mater., 2023, 36(9), 2307490 |
18 | Huang Z. J., Li F. B., Chen B. F., Yuan G. Q., Catal. Sci. Technol., 2016, 6(9), 2942—2948 |
19 | Lau V. W. H., Mesch M. B., Duppel V., Blum V., Senker J., Lotsch B. V., J. Am. Chem. Soc., 2015, 137(3), 1064—1072 |
20 | Guo M. Y., Ma Y. N., Liu Z. Q., Wang D. H., Yang Y. H., Li X. L., Liu E. Z., J. Catal., 2024, 430, 115332 |
21 | Shi L., Liang L., Wang F. X., Liu M. S., Sun J. M., J. Mater. Sci., 2014, 50(4), 1718—1727 |
22 | Zuo S. X., Chen Y., Liu W. J., Yao C., Li Y. R., Ma J. Q., Kong Y., Mao H. H., Li Z. Y., Fu Y. S., J. Coat. Technol. Res., 2017, 14, 1307—1314 |
23 | Du X. R., Zou G. J., Wang Z. H., Wang X. L., Nanoscale, 2015, 7(19), 8701—8706 |
24 | Martha S., Nashim A., Parida K. M., J. Mater. Chem. A, 2013, 1(26), 7816—7824 |
25 | Yu Q. K., Jauregui L. A., Wu W., Colby R., Tian J. F., Su Z. H., Cao H. L., Liu Z. H., Pandey D., Wei D. G., Chung T. F., Peng P., Guisinger N. P., Stach E. A., Bao J. M., Pei S. S., Chen Y. P., Nat. Mater., 2011, 10(6), 443—449 |
26 | Wu X. H., Wang X. F., Wang F. Z., Yu H. G., Appl. Catal. B: Environ., 2019, 247, 70—77 |
27 | Kumar P., Vahidzadeh E., Thakur U. K., Kar P., Alam K. M., Goswami A., Mahdi N., Cui K., Bernard G. M., Michaelis V. K., Shankar K., J. Am. Chem. Soc., 2019, 141(13), 5415—5436 |
28 | Wen J. T., Wang G., Hao P. C., Li X., Liu W. Y., Chen X. Y., Zhan H. J., Li F., ACS Appl. Nano Mater., 2022, 5(9), 13659—13670 |
29 | Zhang G. Q., Xu Y. S., He C. X., Zhang P. X., Mi H. W., Appl. Catal. B, 2021, 283, 119636 |
30 | Wang S. J., He F. T., Zhao X. L., Zhang J. Q., Ao Z. M., Wu H., Yin Y., Shi L., Xu X. Y., Zhao C. C., Wang S. B., Sun H. Q., Appl. Catal. B, 2019, 257, 117931 |
31 | Xu Y. G., Xie M., Huang S. Q., Xu H., Ji H. Y., Xia J. X., Li Y. P., Li H. M., RSC Adv., 2015, 5(33), 26281—26290 |
32 | Zhu M. S., Kim S., Mao L., Fujitsuka M., Zhang J. Y., Wang X. C., Majima T., J. Am. Chem. Soc., 2017, 139(37), 13234—13242 |
33 | Zhou Z. X., Wang J. H., Yu J. C., Shen Y. F., Li Y., Liu A. R., Liu S. Q., Zhang Y. J., J. Am. Chem. Soc., 2015, 137(6), 2179—2182 |
34 | Wen D., Su Y. R., Fang J. Y., Zheng D., Xu Y. S., Zhou S., Meng A. Y., Han P. G., Wong C. P., Nano Energy, 2023, 117, 108917 |
35 | Mohammadikish M., Mosleh N., Appl. Organomet. Chem., 2023, 37(10), e7177 |
36 | Liang Q. H., Li Z., Huang Z. H., Kang F. Y., Yang Q. H., Adv. Funct. Mater., 2015, 25(44), 6885—6892 |
37 | Mo J. M., Wang N., Zhang S. H., Chen X. L., Fu J., Chen P. L., Liang Z., Su Q. C., Li X. J., Res. Chem. Intermed., 2022, 48(9), 3835—3849 |
38 | Nikookar M., Rezaeifard A., Maasoumeh J., Grzhegorzhevskii K. V., Ostroushko A. A., RSC Adv., 2021, 11(61), 38862—38867 |
39 | Hu X. L., Lu P., Pan R., Li Y. X., Bai J. W., He Y. Z., Zhang C. H., Jia F. Y., Fu M., Chem. Engin. J., 2021, 423, 130278 |
40 | Ming L. F., Yue H., Xu L. M., Chen F., J. Mater. Chem. A, 2014, 2(45), 19145—19149 |
41 | Chen Y., Wang B., Lin S., Zhang Y. F., Wang X. C., J. Phys. Chem. C, 2014, 118(51), 29981—29989 |
42 | Shen M., Zhang L. X., Wang M., Tian J. J., Jin X. X., Guo L. M., Wang L. Z., Shi J. L., J. Mater. Chem. A, 2019, 7(4), 1556—1563 |
43 | Zheng H. B., Chen W., Gao H., Wang Y. Y., Guo H. Y., Guo S. Q., Tang Z. L., Zhang J. Y., J. Mater. Chem. C, 2017, 5(41), 10746—10753 |
44 | Liu H. D., Zheng P., Li S. T., Hu X., Fang Y. F., Chen Q. F., Mole. Catal., 2024, 553, 113744 |
45 | Chu S., Wang C. C., Feng J. Y., Wang Y., Zou Z. G., Int. J. Hydrogen Energy, 2014, 39(25), 13519—13526 |
46 | Xu J., Chen Y., Hong Y., Zheng H., Ma D., Xue B., Li Y. X., Appl. Catalysis. A, 2018, 549, 31—39 |
47 | Miao W., Wang Y., Liu Y., Qin H., Chu C., Mao S., Engineering, 2023, 25, 214—221 |
48 | Chen H., Xing Y., Liu S., Liang Y., Fu J., Wang L., Wang W., Chem. Eng. J., 2023, 462, 142038 |
49 | Pan Y., Liu X. J., Zhang W., Shao B. B., Liu Z. F., Liang Q. H., Wu T., He Q. Y., Huang J., Peng Z., Liu Y., Zhao C. H., Chem. Eng. J., 2022, 427, 132032 |
50 | Luo J., Fan C. Z., Tang L., Liu Y., Gong Z. X., Wu T. S., Zhen X. L., Feng C. Y., Feng H. P., Wang L. L., Xu L., Yan M., Appl. Catal. B, 2022, 301, 120757 |
51 | Luo J., Liu Y., Fan C. Z., Tang L., Yang S. J., Liu M. L., Wang M., Feng C. Y., Ouyang X. L., Wang L. L., Xu L., Wang J. J., Yan M., ACS Catal., 2021, 11(18), 11440—11450 |
52 | Chu C. C., Miao W., Li Q. J., Wang D. D., Liu Y., Mao S., Chem. Eng. J., 2022, 428, 132531 |
53 | Wang Y. B., Meng D., Zhao X., Appl. Catal. B, 2020, 273, 119064 |
54 | Tong J. C., Zhang L., Li F., Wang K., Han L. F., Cao S. K., RSC Adv., 2015, 5(107), 88149—88153 |
55 | Liu J. J., Yin H. Y., Nie Q. L., Zou S. H., Molecules, 2022, 27(20), 6965 |
56 | Wang X. C., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J. M., Domen K., Antonietti M., Nat. Mater., 2008, 8(1), 76—80 |
57 | Liu S. Z., Sun H. Q., O’Donnell K., Ang H. M., Tade M. O., Wang S. B., J. Colloid Interface Sci., 2016, 464, 10—17 |
58 | Zhou G. L., Sun H. Q., Wang S. B., Ming Ang H., Tadé M. O., Sep. Purif. Technol., 2011, 80(3), 626—634 |
59 | Yan H. J., Chen Y., Xu S. M., Int. J. Hydrogen Energy, 2012, 37(1), 125—133 |
[1] | ZHAO Ziwang, CONG Shurui, WANG Chunyu, ZHOU Shuyuan, PENG Meng, WANG Lei, XU Jiayu. Study of Ozone Elimination via Chlorine Radical Chain Reaction Under Visible Light [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240187. |
[2] | LIU Suyu, DING Fei, LI Qian, FAN Chunhai, FENG Jing. Azobenzene-integrated DNA Nanomachine [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220122. |
[3] | ZHANG Zhen, DENG Yu, ZHANG Qinfang, YU Dagang. Visible Light-driven Carboxylation with CO2 [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220255. |
[4] | ZHANG Xiaofei, LIU Jiaxin. Visible Light Induced Cyclization of O-Alkenylcarboxanilide to 2-Quinolinone [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220274. |
[5] | LI Lun, ZHANG Jingyan, LUO Jing, LIU Ren, ZHU Yi. Synthesis and Properties of UV/Vis-LED Excitable Photoinitiators Based on Coumarin Pyridinium Salt [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220178. |
[6] | GUI Chen, WANG Haolin, SHAO Baixuan, YANG Yujing, XU Guangqing. Molten-salt-assistance Synthesis and Photocatalytic Hydrogen Evolution Performances of g-C3N4 Nanostructures [J]. Chem. J. Chinese Universities, 2021, 42(3): 827. |
[7] | ZHU Min, ZHANG Xiao, YOU Shuli. Visible-light-promoted Dearomatization of Benzene and Derivatives† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1407. |
[8] | ZHAO Mengxin, MENG Zhe, LI Heping, MA Zongqin, ZHAN Haijuan, LIU Wanyi. Photodegradation of Antibiotic in Environmental Water by Graphene Oxide Modulation Bismuth Molybdate Under Visible Light Irradiation [J]. Chem. J. Chinese Universities, 2020, 41(11): 2479. |
[9] | JIANG Xue,FU Yao,HUANG Dan,GUO Yupeng. Colour Change of Red Iron Oxide by One-step Method Using Oxidant† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2734. |
[10] | LIANG Haiou, BAI Jie, YU Dandan, ZHANG Qingyu, LI Chunping. Preparation of One-dimensional CNFs Supported AgX/TiO2(X=Br, I) Ternary Composite and Their Visible Light Photocatalytic Activity [J]. Chem. J. Chinese Universities, 2017, 38(6): 947. |
[11] | ZHANG Chunlei, HUANG Danya, SUN Minghui, OUYANG Yiting, WANG Chao, LI Xiaoyun, CHEN Lihua, SU Baolian. Promoting Effect of Nonmetal Ion Doping and Hierarchically 3D Dendrimeric Architecture for Visible-light-active Mesoporous TiO2 Photocatalyst† [J]. Chem. J. Chinese Universities, 2017, 38(3): 471. |
[12] | LI Yuejun, CAO Tieping, MEI Zemin, XI Xiaotian, WANG Xia. Preparation and Photocatalytic Properties of Pr-doped Bi2MoO6/TiO2 Composite Nanofibers Under Visible Light Irradiation† [J]. Chem. J. Chinese Universities, 2017, 38(12): 2313. |
[13] | ZHANG Qian, HU Shaozheng, LI Fayun, FAN Zhiping, WANG Qiong, WANG Fei, LI Wei, LIU Daosheng. Preparation of Zn0.11Sn0.12Cd0.84S1.12/g-C3N4 Heterojunctions and Their Photocatalytic Performance Under Visible Light† [J]. Chem. J. Chinese Universities, 2016, 37(3): 521. |
[14] | LIANG Ruiyu, XU Dongdong, ZHA Wenying, QI Jizhen, HUANG Langhuan. Preparation of Ce-Doped Graphitic Carbon Nitride with Enhanced Visible-light Photocatalytic Activity† [J]. Chem. J. Chinese Universities, 2016, 37(11): 1953. |
[15] | DONG Deming, SUN Jiaqian, ZHAO Tianyu, LI Ming, HUA Xiuyi, LIANG Dapeng, GUO Zhiyong. Investigation on the Factors Affecting Hydrogen Peroxide Concentrations in Natural Biofilm Systems† [J]. Chem. J. Chinese Universities, 2015, 36(7): 1337. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||