Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (7): 20240063.doi: 10.7503/cjcu20240063
• Article: Inorganic Chemistry • Previous Articles Next Articles
BAI Yize, LIU Ruiduan, LU Qiuran, ZHAO Haiyan()
Received:
2024-02-02
Online:
2024-07-10
Published:
2024-04-19
Contact:
ZHAO Haiyan
E-mail:hbhaiyanzh@163.com
Supported by:
CLC Number:
TrendMD:
BAI Yize, LIU Ruiduan, LU Qiuran, ZHAO Haiyan. Synthesis, Crystal Structure and Catecholase Activity of Copper(II) Complexes with N,N,N⁃Tridentate Schiff Base Ligand[J]. Chem. J. Chinese Universities, 2024, 45(7): 20240063.
Complex | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Formula | C15H14Cl2CuN4 | C17H14CuN6S2 | C26H26Cl2CuN6O9 | C26H24Cl2CuN6O8 |
M | 384.74 | 430.00 | 700.97 | 682.95 |
Temperature/K | 298(2) | 298(2) | 298(2) | 298(2) |
λ/nm | 0.071073 | 0.071073 | 0.071073 | 0.071073 |
Crystal System | Orthorhombic | Triclinic | Triclinic | Monoclinic |
Space group | P212121 | P | P | P21/c |
a/nm | 0.8662(2) | 0.87780(8) | 0.89274(9) | 1.70142(16) |
b/nm | 1.2611(3) | 0.96341(9) | 1.17971(12) | 1.09415(9) |
c/nm | 1.4058(4) | 1.23569(11) | 1.54248(17) | 1.61380(15) |
α/(°) | 90 | 97.4300(10) | 108.060(2) | 90 |
β/(°) | 90 | 94.2400(10) | 96.0830(10) | 105.806(2) |
γ/(°) | 90 | 112.621(2) | 95.6240(10) | 90 |
Volume/nm3 | 1.5357(7) | 0.94774(15) | 1.5210(3) | 2.8907(5) |
Z | 4 | 2 | 2 | 4 |
μ/mm-1 | 1.770 | 1.386 | 0.955 | 1.000 |
F(000) | 780 | 438 | 718 | 1396 |
Crystal size/mm | 0.48×0.45×0.43 | 0.23×0.16×0.11 | 0.45×0.44×0.41 | 0.23×0.15×0.09 |
Theta range/(°) | 2.85—25.02 | 2.32—25.02 | 2.53—25.02 | 2.28—25.02 |
Index ranges | -10≤h≤8 | -6≤h≤10 | -10≤h≤10 | -20≤h≤20 |
-14≤k≤15 | -11≤k≤10 | -14≤k≤10 | -3≤k≤10 | |
-14≤l≤16 | -14≤l≤14 | -18≤l≤17 | -19≤l≤18 | |
Dcalc/(g·cm-3) | 1.664 | 1.507 | 1.531 | 1.569 |
Total reflections | 7676 | 4818 | 7606 | 14014 |
Unique reflections | 2711 | 3287 | 5232 | 5076 |
R1, wR2[I>2σ(I)] | 0.0264, 0.0565 | 0.0737, 0.1706 | 0.0602, 0.1471 | 0.0843, 0.1849 |
R1, wR2(all data) | 0.0331, 0.0594 | 0.1083, 0.1840 | 0.1079, 0.1726 | 0.1648, 0.2115 |
Goodness⁃of⁃fit | 1.056 | 1.075 | 1.052 | 1.064 |
CCDC No. | 2325617 | 2325377 | 2325376 | 2325375 |
Table1 Crystallographic data of complexes 1—4
Complex | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Formula | C15H14Cl2CuN4 | C17H14CuN6S2 | C26H26Cl2CuN6O9 | C26H24Cl2CuN6O8 |
M | 384.74 | 430.00 | 700.97 | 682.95 |
Temperature/K | 298(2) | 298(2) | 298(2) | 298(2) |
λ/nm | 0.071073 | 0.071073 | 0.071073 | 0.071073 |
Crystal System | Orthorhombic | Triclinic | Triclinic | Monoclinic |
Space group | P212121 | P | P | P21/c |
a/nm | 0.8662(2) | 0.87780(8) | 0.89274(9) | 1.70142(16) |
b/nm | 1.2611(3) | 0.96341(9) | 1.17971(12) | 1.09415(9) |
c/nm | 1.4058(4) | 1.23569(11) | 1.54248(17) | 1.61380(15) |
α/(°) | 90 | 97.4300(10) | 108.060(2) | 90 |
β/(°) | 90 | 94.2400(10) | 96.0830(10) | 105.806(2) |
γ/(°) | 90 | 112.621(2) | 95.6240(10) | 90 |
Volume/nm3 | 1.5357(7) | 0.94774(15) | 1.5210(3) | 2.8907(5) |
Z | 4 | 2 | 2 | 4 |
μ/mm-1 | 1.770 | 1.386 | 0.955 | 1.000 |
F(000) | 780 | 438 | 718 | 1396 |
Crystal size/mm | 0.48×0.45×0.43 | 0.23×0.16×0.11 | 0.45×0.44×0.41 | 0.23×0.15×0.09 |
Theta range/(°) | 2.85—25.02 | 2.32—25.02 | 2.53—25.02 | 2.28—25.02 |
Index ranges | -10≤h≤8 | -6≤h≤10 | -10≤h≤10 | -20≤h≤20 |
-14≤k≤15 | -11≤k≤10 | -14≤k≤10 | -3≤k≤10 | |
-14≤l≤16 | -14≤l≤14 | -18≤l≤17 | -19≤l≤18 | |
Dcalc/(g·cm-3) | 1.664 | 1.507 | 1.531 | 1.569 |
Total reflections | 7676 | 4818 | 7606 | 14014 |
Unique reflections | 2711 | 3287 | 5232 | 5076 |
R1, wR2[I>2σ(I)] | 0.0264, 0.0565 | 0.0737, 0.1706 | 0.0602, 0.1471 | 0.0843, 0.1849 |
R1, wR2(all data) | 0.0331, 0.0594 | 0.1083, 0.1840 | 0.1079, 0.1726 | 0.1648, 0.2115 |
Goodness⁃of⁃fit | 1.056 | 1.075 | 1.052 | 1.064 |
CCDC No. | 2325617 | 2325377 | 2325376 | 2325375 |
Complex* | τ | dCu—X/nm | vmax/(mol·L-1·s-1) | Km/(mol·L-1) | Kcat/(h-1) | Ref. |
---|---|---|---|---|---|---|
1 | 0.088 | 0.24967(10) | 1.14×10-4 | 1.95×10-3 | 12.56 | This work |
2 | 0.270 | 0.2605(2) | 3.40×10-4 | 1.49×10-2 | 37.41 | This work |
3 | 0.180 | 0.2182(4) | 2.35×10-4 | 9.13×10-3 | 25.90 | This work |
4 | 0.340 | 0.2317(9) | 2.31×10-4 | 3.54×10-3 | 25.45 | This work |
[Cu(HL1)Cl2] | 0.043 | 0.25719(8) | 4.54×10-4 | 0.5221 | 163.30 | [ |
[Cu(sal⁃ppzH)Cl2] | 0.015 | 0.2694 | 1.64×10-4 | 0.53 | 11.82 | [ |
[Cu(L2)(phen)] [Cu(L2)(phen)]∙5H2O | 0.44 | 0.2251(4) | 5.67×10-7 | 2.4×10-3 | 62 | [ |
0.68 | 0.2118(3) | |||||
[Cu(L3)(phen)](ClO4) | 0.56 | 0.2195(15) | 4.67×10-7 | 2.3×10-3 | 52 | [ |
[Cu(L4)(bipy)]ClO4 | 0.67 | 0.21423(19) | 1.16×10-8 | 4.64×10-3 | 83.59 | [ |
[Cu(L4)(phen)]ClO4 | 0.62 | 0.21911(19) | 1.02×10-8 | 2.95×10-3 | 73.57 | [ |
Table 2 Kinetic parameters and structure parameters for the oxidation of 3,5-DTBC catalyzed by Cu(II) complexes
Complex* | τ | dCu—X/nm | vmax/(mol·L-1·s-1) | Km/(mol·L-1) | Kcat/(h-1) | Ref. |
---|---|---|---|---|---|---|
1 | 0.088 | 0.24967(10) | 1.14×10-4 | 1.95×10-3 | 12.56 | This work |
2 | 0.270 | 0.2605(2) | 3.40×10-4 | 1.49×10-2 | 37.41 | This work |
3 | 0.180 | 0.2182(4) | 2.35×10-4 | 9.13×10-3 | 25.90 | This work |
4 | 0.340 | 0.2317(9) | 2.31×10-4 | 3.54×10-3 | 25.45 | This work |
[Cu(HL1)Cl2] | 0.043 | 0.25719(8) | 4.54×10-4 | 0.5221 | 163.30 | [ |
[Cu(sal⁃ppzH)Cl2] | 0.015 | 0.2694 | 1.64×10-4 | 0.53 | 11.82 | [ |
[Cu(L2)(phen)] [Cu(L2)(phen)]∙5H2O | 0.44 | 0.2251(4) | 5.67×10-7 | 2.4×10-3 | 62 | [ |
0.68 | 0.2118(3) | |||||
[Cu(L3)(phen)](ClO4) | 0.56 | 0.2195(15) | 4.67×10-7 | 2.3×10-3 | 52 | [ |
[Cu(L4)(bipy)]ClO4 | 0.67 | 0.21423(19) | 1.16×10-8 | 4.64×10-3 | 83.59 | [ |
[Cu(L4)(phen)]ClO4 | 0.62 | 0.21911(19) | 1.02×10-8 | 2.95×10-3 | 73.57 | [ |
1 | Mondal S., Chakraborty M., Mondal A., Pakhira B., Blake A. J., Sinn E., Chattopadhyay S. K., New J. Chem., 2018, 42(12), 9588—9597 |
2 | Chhabra V., Kundu B. K., Ranjan R., Pragti, Mobin S. M., Mukhopadhyay S., Inorg. Chim. Acta, 2020, 502, 119389 |
3 | Balakrishnan N., Haribabu J., Dhanabalan A. K., Swaminathan S., Sun S., Dibwe D. F., Bhuvanesh N., Awale S., Karvembu R., Dalton Trans., 2020, 49(27), 9411—9424 |
4 | Thio Y., Yang X., Vittal J. J., Dalton Trans., 2014, 43(9), 3545—3556 |
5 | Dey S. K., Mukherjee A., Coord. Chem. Rev., 2016, 310, 80—115 |
6 | Ramadan A. E. M. M., Shaban S.Y., Ibrahim M. M., Abdel⁃Rahman A. A. H., Sallam S. A., Al-Harbi S. A., Omar W., New J. Chem., 2020, 44(16), 6331—6345 |
7 | Dasgupta S., Chakraborty P., Kundu P., Kara H., Aullón G., Zangrando E., Das D., CrystEngComm, 2019, 21(46), 7094—7107 |
8 | Marcon M., Crespi S., Pielmeier A., König B., Chem. Commun., 2023, 59(7), 948—951 |
9 | Das K., Dolai S., Vojtíšek P., Manna S. C., Polyhedron, 2018, 149, 7—16 |
10 | Kahrović E., Zahirović A., Višnjevac A., Osmanković I., Turkušić E., Kurtagić H., Croat. Chem. Acta, 2018, 91(2), 195—207 |
11 | Magherusan A. M, Nelis D. N., Twamley B., McDonald A. R., Dalton Trans., 2018, 47(43), 15555—15564 |
12 | Dede B, Özen N., Görgülü G., J. Mol. Struct., 2018, 1163, 357—367 |
13 | Ghosh A. K., Ali A., Singh Y., Purohit C. S., Ghosh R., Inorg. Chim. Acta, 2018, 474, 156—163 |
14 | Das M., Afsan Z., Basak D., Arjmand F., Ray D., Dalton Trans., 2019, 48(4), 1292—1313 |
15 | Mandal A., Sarkar A., Adhikary A., Samanta D., Das D., Dalton Trans., 2020, 49(43), 15461—15472 |
16 | Chakraborty M., Mondal A., Chattopadhyay S. K., New J. Chem., 2020, 44(30), 12916—12925 |
17 | Jana N. C., Ghorai P., Brandão P., Jagličić Z., Panja A., Dalton Trans., 2021, 50(42), 15233—15247 |
18 | Chatterjee A., Seikh M. M., Chowdhury S., Ghosh R., Inorg. Chim. Acta, 2021, 521, 120345 |
19 | Shyamal M., Mandal T. K., Panja A., Saha A., RSC Adv., 2014, 4(96), 53520—53530 |
20 | Bhunia A., Manna S., Mistri S., Paul A., Manne R. K., Santra M. K., Bertolasi V., Manna S. C., RSC Adv., 2015, 5(83), 67727—67737 |
21 | Beyazit N., Çatıkkaş B., Bayraktar Ş., Demetgül C., J. Mol. Struct., 2016, 1119, 124—132 |
22 | Kumari S., Mahato A. K., Maurya A., Singh V. K., Kesharwani N., Kachhap P., Koshevoy I. O., Haldar C., New J. Chem., 2017, 41(22), 13625—13646 |
23 | Selvakumaran B., Murali M., Sathya V., Inorg. Chim. Acta, 2023, 553, 121514 |
24 | Das M., Kundu B. K., Tiwari R., Mandal P., Nayak D., Ganguly R., Mukhopadhyay S., Inorg. Chim. Acta, 2018, 469, 111—122 |
25 | Bhunia A., Vojtíšek P., Bertolasi V., Manna S. C., J. Mol. Struct., 2019, 1189, 94—101 |
26 | Bhunia A, Vojtíšek P., Manna S. C., J. Mol. Struct., 2019, 1179, 558—567 |
27 | Castro K. A. D. F., Figueira F., Paz F. A. A., Tomé J. P. C., da Silva R. S., Nakagaki S., Neves M. G. P. M. S., Cavaleiro J. A. S., Simões M. M. Q., Dalton Trans., 2019, 48(23), 8144—8152 |
28 | Santra A., Brandao P., Mondal G., Bera P., Jana A., Bhattacharyya I., Pramanik C., Bera P., Polyhedron, 2020, 176, 114277 |
29 | Biswas B. K., Saha S., Biswas N., Chowdhury M., Frontera A., Rizzoli C., Choudhury R. R., Choudhury C. R., J. Mol. Struct., 2020, 1217, 128398 |
30 | Sarkar S., Kim M., Lee H. I., Bull. Korean Chem. Soc., 2021, 42(7), 1037—1046 |
31 | Mukherjee S., Pal C. K., Kotakonda M., Joshi M., Shit M., Ghosh P., Choudhury A. R., Biswas B., J. Mol. Struct., 2021, 1245, 131057 |
32 | Selvakumaran B., Murali M., Inorg. Chim. Acta, 2022, 534, 120819 |
33 | Sýs M., Kocábová J., Klikarová J., Novák M., Jirásko R., Obluková M., Mikysek T., Sokolová R., Dalton Trans., 2022, 51(36), 13703—13715 |
34 | Mandal S., Naskar R., Mondal A. S., Bera B., Mondal T. K., Dalton Trans., 2023, 52(18), 5983—5998 |
35 | Maity R., Maity M., Jana K., Maity T., Sepay N., Samanta B. C., New J. Chem., 2023, 47(5), 2673—2681 |
36 | Roy B. C., Dutta B., Basak D., Debnath S., Ray D., Mahapatra T. S., New J. Chem., 2023, 47(25), 11928—11944 |
37 | Chirinos J., Ibarra D., Morillo Á., Llovera L., González T., Zárraga J., Larreal O., Guerra M., Polyhedron, 2021, 203, 115232 |
38 | Zhang Q., Han Y., Jiao Y. H., Chin. J. Inorg. Chem., 2016, 32(1), 131—138 |
张前, 韩燕, 焦元红. 无机化学学报, 2016, 32(1), 131—138 | |
39 | Zhao H. Y., Yang F. L., Li N., Wang X. J., J. Mol. Struct., 2017, 1148, 62—72 |
40 | Sheldrick G. M., Program for Crystal Structures Refinement: SHELXL⁃97, University of Göttingen, Göttingen, 1997 |
41 | Addison A.W., Rao T. N., Reedijk J., van Rijn J., Verschoor G. C., J. Chem. Soc., Dalton Trans., 1984, (7), 1349—1356 |
42 | Mukherjee T., Pessoa J. C., Kumar A., Sarkar A. R., Dalton Trans., 2013, 42(7), 2594—2607 |
43 | Franco E., López⁃Torres E., Mendiola M. A., Sevilla M. T., Polyhedron, 2000, 19(4), 441—451 |
44 | Sreedaran S., Bharathi K. S., Rahiman A. K., Jagadish L., Kaviyarasan V., Narayanan V., Polyhedron, 2008, 27(13), 2931—2938 |
45 | Kundu B. K., Ranjan R., Mukherjee A., Mobin S. M., Mukhopadhyay S., J. Inorg. Biochem., 2019, 195, 164—173 |
[1] | MAO Dongao, XU Linmeng, BI Yanfeng. Structural Transformation and Luminescence Properties of Terbium-sulfonylcalix[4]arene Mononuclear Complexes [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230107. |
[2] | LIU Qingqing, WANG Pu, WANG Yongshuai, ZHAO Man, DONG Huanli. Synthesis and Topochemical Polymerization Study of Naphthalene/perylene Imides Substituted Diacetylene Derivatives [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220091. |
[3] | SHI Naike, ZHANG Ya, SANSON Andrea, WANG Lei, CHEN Jun. Uniaxial Negative Thermal Expansion and Mechanism in Zn(NCN) [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220124. |
[4] | XU Dandan, ZOU Xiucheng, LUO Jing, LIU Ren. Synthesis and Characterization of Phenothiazine-based Schiff Bases as Visible Light Photoinitiators [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210857. |
[5] | YUE Shengli, WU Guangbao, LI Xing, LI Kang, HUANG Gaosheng, TANG Yi, ZHOU Huiqiong. Research Progress of Quasi-two-dimensional Perovskite Solar Cells [J]. Chem. J. Chinese Universities, 2021, 42(6): 1648. |
[6] | CAO Cheng,CAO Tian,YAN Penji,WANG Qingyun,YUE Guoren,JI Xiangdong. High Selectivity of Enol-keto Tautomers Imine Derivative for the Recognition of Co2+† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1544. |
[7] | TIAN Xia,YANG Fuqun,YUAN Wei,ZHAO Lei,YAO Lei,ZHEN Xiaoli,HAN Jianrong,LIU Shouxin. Synthesis, Structure and Recognition Properties of Macrocyclic Crown Ethers with Oxadiazole [J]. Chem. J. Chinese Universities, 2020, 41(3): 490. |
[8] | LIU Dongmei,SU Yajing,LI Shanshan,XU Qiwei,LI Xia. Transition Metal Coordination Polymers Constructed by 4-(4-Carboxyphenoxy)isophthalic Acid: Synthesis, Crystal Structure, Fluorescence Sensing and Photocatalysis † [J]. Chem. J. Chinese Universities, 2020, 41(2): 253. |
[9] | QIN Liulei,LIU Yang,GUAN Xiaoqin,ZHENG Xiaoyuan,ZHANG Ziyu,LIU Zunqi. Synthesis and Switchable Dielectric Properties of an Inorganic-organic Hybrid Complex [H2(DABCO)CuCl4]·H2O † [J]. Chem. J. Chinese Universities, 2020, 41(1): 70. |
[10] | LI Bing,WANG Xuemin,BAI Fengying,LIU Shuqing. Synthesises, Structures and Antibacterial Activities of a Series of Rare Earth Nitrogen Heterocyclic Complexes† [J]. Chem. J. Chinese Universities, 2019, 40(4): 632. |
[11] | WANG Dongmei,LIU Zihua,LI Guanghua,LIU Yunling,LI Chunxia. Synthesis, Structure and Fluorescent Property of Indium-based Bimetallic Metal-organic Frameworks† [J]. Chem. J. Chinese Universities, 2018, 39(9): 1886. |
[12] |
TIAN Huan, ZHANG Menglong, WANG Lisha, TONG Bihai, ZHAO Zhuo.
Synthesis of 4,13-Dithio Benzene and-18-Crown-6 and Its Selective Extractability on A |
[13] | ZHU Lei,HAN Junyan,CHANG Haizhen,QIU Yuyuan,ZHANG Yanan,PENG Danni,HU Wei,MIAO Shaobin. Different Pathways for the Cyclocondensation Reactions of 1,2-Diamine and 1,2-Diketone† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2686. |
[14] | CHEN Qidan, TANG Junjie, FANG Qianrong. Highly Stable Fluorine Containing Hierarchical Porous Covalent Organic Framework† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2357. |
[15] | LI Zheng, LI Rui, LI Xia. Synthesis, Crystal Structure and Fluorescent Properties of Transition Metal Complexes Constructed with 2-(3'-Carboxyphenoxy)benzoic Acid and N-Donor Ligands† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2363. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||