Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (7): 20240038.doi: 10.7503/cjcu20240038
• Physical Chemistry • Previous Articles Next Articles
KONG Xue, ZHANG Haiping, XIA Wensheng(), ZHANG Qinghong, WAN Huilin
Received:
2024-01-22
Online:
2024-07-10
Published:
2024-04-07
Contact:
XIA Wensheng
E-mail:wsxia@xmu.edu.cn
Supported by:
CLC Number:
TrendMD:
KONG Xue, ZHANG Haiping, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Mechanism upon Conversion of Syngas Catalyzed by Single Atom Mo Supported on Graphene: Role of Carbon Component and Impact from Mo-C Interactions[J]. Chem. J. Chinese Universities, 2024, 45(7): 20240038.
No. | Reaction(rxn) | UB3LYP/6⁃31G*+Def2⁃SVP | UB3LYP/Def2⁃TZVPP//UB3LYP/6⁃31G*+Def2⁃SVP | ||||
---|---|---|---|---|---|---|---|
ΔGa,f /eV | ΔGa,r /eV | ΔGrxn /eV | ΔG′a,f /eV | ΔG′a,r /eV | ΔG′rxn /eV | ||
1 | CO→C+O | 5.48 | 1.39 | 4.09 | 5.62 | 1.36 | 4.26 |
2 | CO+H→CH+O | 1.67 | 3.01 | -1.34 | 1.75 | 3.05 | -1.30 |
3 | CO+H→COH | 3.32 | 2.01 | 1.31 | 3.24 | 2.05 | 1.19 |
4 | CO+H→HCO | 0.85 | 1.44 | -0.59 | 0.77 | 1.37 | -0.60 |
5 | HCO+H→CH2+O | 2.04 | 3.48 | -1.44 | 1.98 | 3.40 | -1.42 |
6 | HCO→CH+O | 1.35 | 2.13 | -0.78 | 1.38 | 2.10 | -0.72 |
7 | HCO+H→CHOH | 2.29 | 1.26 | 1.03 | 2.20 | 1.32 | 0.88 |
8 | HCO+H→CH2O | 0.50 | 1.17 | -0.67 | 0.39 | 1.07 | -0.68 |
9 | CH2O→CH2+O | 1.39 | 2.15 | -0.76 | 1.37 | 2.12 | -0.75 |
10 | CH2O+H→CH3+O | 1.36 | 4.03 | -2.67 | 1.38 | 4.02 | -2.64 |
11 | CH2O+H→CH2OH | 1.63 | 0.63 | 1.00 | 1.51 | 0.68 | 0.83 |
12 | CH2O+H→CH3O | 0.49 | 0.99 | -0.50 | 0.42 | 0.95 | -0.53 |
13 | CH3O→CH3+O | 1.25 | 2.55 | -1.30 | 1.30 | 2.49 | -1.19 |
14 | CH3O+H→CH3OH | 2.20 | 0.37 | 1.83 | 2.10 | 0.35 | 1.75 |
15 | CH3O+H→CH4+O | 1.29 | 4.84 | -3.55 | 1.28 | 4.79 | -3.51 |
Table 1 Predicted activation free energy of forward(ΔGa, f) and reverse(ΔGa, r) steps involving CH x and CH x O species of CO hydrogenation on Mo/pri-graphene, and reaction free energy(ΔGrxn)
No. | Reaction(rxn) | UB3LYP/6⁃31G*+Def2⁃SVP | UB3LYP/Def2⁃TZVPP//UB3LYP/6⁃31G*+Def2⁃SVP | ||||
---|---|---|---|---|---|---|---|
ΔGa,f /eV | ΔGa,r /eV | ΔGrxn /eV | ΔG′a,f /eV | ΔG′a,r /eV | ΔG′rxn /eV | ||
1 | CO→C+O | 5.48 | 1.39 | 4.09 | 5.62 | 1.36 | 4.26 |
2 | CO+H→CH+O | 1.67 | 3.01 | -1.34 | 1.75 | 3.05 | -1.30 |
3 | CO+H→COH | 3.32 | 2.01 | 1.31 | 3.24 | 2.05 | 1.19 |
4 | CO+H→HCO | 0.85 | 1.44 | -0.59 | 0.77 | 1.37 | -0.60 |
5 | HCO+H→CH2+O | 2.04 | 3.48 | -1.44 | 1.98 | 3.40 | -1.42 |
6 | HCO→CH+O | 1.35 | 2.13 | -0.78 | 1.38 | 2.10 | -0.72 |
7 | HCO+H→CHOH | 2.29 | 1.26 | 1.03 | 2.20 | 1.32 | 0.88 |
8 | HCO+H→CH2O | 0.50 | 1.17 | -0.67 | 0.39 | 1.07 | -0.68 |
9 | CH2O→CH2+O | 1.39 | 2.15 | -0.76 | 1.37 | 2.12 | -0.75 |
10 | CH2O+H→CH3+O | 1.36 | 4.03 | -2.67 | 1.38 | 4.02 | -2.64 |
11 | CH2O+H→CH2OH | 1.63 | 0.63 | 1.00 | 1.51 | 0.68 | 0.83 |
12 | CH2O+H→CH3O | 0.49 | 0.99 | -0.50 | 0.42 | 0.95 | -0.53 |
13 | CH3O→CH3+O | 1.25 | 2.55 | -1.30 | 1.30 | 2.49 | -1.19 |
14 | CH3O+H→CH3OH | 2.20 | 0.37 | 1.83 | 2.10 | 0.35 | 1.75 |
15 | CH3O+H→CH4+O | 1.29 | 4.84 | -3.55 | 1.28 | 4.79 | -3.51 |
No. | Reaction(rxn) | UB3LYP/6⁃31G*+Def2⁃SVP | UB3LYP/Def2⁃TZVPP// UB3LYP/6⁃31G*+Def2⁃SVP | ||||
---|---|---|---|---|---|---|---|
ΔGa,f /eV | ΔGa,r /eV | ΔGrxn /eV | ΔG′a,f /eV | ΔG′a,r /eV | ΔG′rxn /eV | ||
1 | CO→C+O | 5.79 | 0.63 | 5.16 | 5.94 | 0.66 | 5.28 |
2 | CO+H→COH | 2.36 | 0.72 | 1.64 | 2.33 | 0.78 | 1.55 |
3 | CO+H→HCO | 0.20 | 0.47 | -0.27 | 0.16 | 0.38 | -0.22 |
4 | HCO→CH+O | 3.78 | 2.50 | 1.28 | 3.81 | 2.47 | 1.34 |
5 | HCO+H→CH+OH | 3.24 | 3.99 | -0.75 | 3.23 | 4.11 | -0.88 |
6 | HCO+H→CHOH | 1.73 | 1.07 | 0.66 | 1.66 | 1.16 | 0.50 |
7 | HCO+H→CH2O | 0.25 | 1.00 | -0.75 | 0.21 | 0.95 | -0.74 |
8 | CH2O→CH2+O | 2.50 | 1.24 | 1.26 | 2.50 | 1.24 | 1.26 |
9 | CH2O+H→CH3+O | 2.29 | 3.29 | -1.00 | 2.30 | 3.27 | -0.97 |
10 | CH2O+H→CH3O | 0.74 | 2.45 | -1.71 | 0.59 | 2.29 | -1.70 |
11 | CH2O+H→CH2OH | 0.71 | 1.25 | -0.54 | 0.62 | 1.23 | -0.61 |
12 | CH2OH→CH2+OH | 1.16 | 1.85 | -0.69 | 1.11 | 1.84 | -0.73 |
13 | CH2OH+H→CH2+H2O | 2.36 | 3.19 | -0.83 | 2.31 | 3.32 | -1.01 |
14 | CH2OH+H→CH3+OH | 0.96 | 2.97 | -2.01 | 0.93 | 2.97 | -2.04 |
15 | CH2OH+H→CH3OH | 0.85 | 2.20 | -1.35 | 0.69 | 2.07 | -1.38 |
16 | CH3O→CH3+O | 2.05 | 1.30 | 0.75 | 1.99 | 1.22 | 0.77 |
17 | CH3O+H→CH3+OH | 3.08 | 3.44 | -0.36 | 3.02 | 3.56 | -0.54 |
18 | CH3O+H→CH4+O | 2.65 | 3.96 | -1.31 | 2.66 | 3.93 | -1.27 |
19 | CH3O+H→CH3OH | 1.69 | 1.63 | 0.06 | 1.62 | 1.72 | -0.10 |
20 | CH3+H→CH4 | 0.45 | 1.56 | -1.11 | 0.43 | 1.52 | -1.09 |
Table 2 Predicted activation free energy of forward(ΔGa,f) and reverse(ΔGa,r) steps involving CH x and CH x O species of CO hydrogenation on Mo/sv-graphene, and reaction free energy(ΔGrxn)
No. | Reaction(rxn) | UB3LYP/6⁃31G*+Def2⁃SVP | UB3LYP/Def2⁃TZVPP// UB3LYP/6⁃31G*+Def2⁃SVP | ||||
---|---|---|---|---|---|---|---|
ΔGa,f /eV | ΔGa,r /eV | ΔGrxn /eV | ΔG′a,f /eV | ΔG′a,r /eV | ΔG′rxn /eV | ||
1 | CO→C+O | 5.79 | 0.63 | 5.16 | 5.94 | 0.66 | 5.28 |
2 | CO+H→COH | 2.36 | 0.72 | 1.64 | 2.33 | 0.78 | 1.55 |
3 | CO+H→HCO | 0.20 | 0.47 | -0.27 | 0.16 | 0.38 | -0.22 |
4 | HCO→CH+O | 3.78 | 2.50 | 1.28 | 3.81 | 2.47 | 1.34 |
5 | HCO+H→CH+OH | 3.24 | 3.99 | -0.75 | 3.23 | 4.11 | -0.88 |
6 | HCO+H→CHOH | 1.73 | 1.07 | 0.66 | 1.66 | 1.16 | 0.50 |
7 | HCO+H→CH2O | 0.25 | 1.00 | -0.75 | 0.21 | 0.95 | -0.74 |
8 | CH2O→CH2+O | 2.50 | 1.24 | 1.26 | 2.50 | 1.24 | 1.26 |
9 | CH2O+H→CH3+O | 2.29 | 3.29 | -1.00 | 2.30 | 3.27 | -0.97 |
10 | CH2O+H→CH3O | 0.74 | 2.45 | -1.71 | 0.59 | 2.29 | -1.70 |
11 | CH2O+H→CH2OH | 0.71 | 1.25 | -0.54 | 0.62 | 1.23 | -0.61 |
12 | CH2OH→CH2+OH | 1.16 | 1.85 | -0.69 | 1.11 | 1.84 | -0.73 |
13 | CH2OH+H→CH2+H2O | 2.36 | 3.19 | -0.83 | 2.31 | 3.32 | -1.01 |
14 | CH2OH+H→CH3+OH | 0.96 | 2.97 | -2.01 | 0.93 | 2.97 | -2.04 |
15 | CH2OH+H→CH3OH | 0.85 | 2.20 | -1.35 | 0.69 | 2.07 | -1.38 |
16 | CH3O→CH3+O | 2.05 | 1.30 | 0.75 | 1.99 | 1.22 | 0.77 |
17 | CH3O+H→CH3+OH | 3.08 | 3.44 | -0.36 | 3.02 | 3.56 | -0.54 |
18 | CH3O+H→CH4+O | 2.65 | 3.96 | -1.31 | 2.66 | 3.93 | -1.27 |
19 | CH3O+H→CH3OH | 1.69 | 1.63 | 0.06 | 1.62 | 1.72 | -0.10 |
20 | CH3+H→CH4 | 0.45 | 1.56 | -1.11 | 0.43 | 1.52 | -1.09 |
Catalyst | Reaction(rxn) | Reactant | TS | ΔGa,f/eV | ||||||
---|---|---|---|---|---|---|---|---|---|---|
X⁃Mo/G | qX | qMo | qG | X⁃Mo/G | qX | qMo | qG | |||
Mo/pri⁃graphene | — | 0.551 | -0.551 | 0.551 | -0.551 | — | ||||
CO+H→HCO | 2.881 | -0.307 | 0.316 | -0.009 | 2.540 | -0.254 | 0.358 | -0.104 | 0.85 | |
Mo/sv⁃graphene | — | 0.778 | -0.778 | 0.778 | -0.778 | — | ||||
CO+H→HCO | 2.132 | 0.312 | 0.004 | -0.316 | 2.098 | 0.045 | 0.380 | -0.425 | 0.20 |
Table 3 Wiberg bond order(X-Mo/G) and NPA charge(q/e) upon the reactant and the transition state(TS) of CO hydrogenation on Mo/pri-graphene and Mo/sv-graphene, and their activation free energy*
Catalyst | Reaction(rxn) | Reactant | TS | ΔGa,f/eV | ||||||
---|---|---|---|---|---|---|---|---|---|---|
X⁃Mo/G | qX | qMo | qG | X⁃Mo/G | qX | qMo | qG | |||
Mo/pri⁃graphene | — | 0.551 | -0.551 | 0.551 | -0.551 | — | ||||
CO+H→HCO | 2.881 | -0.307 | 0.316 | -0.009 | 2.540 | -0.254 | 0.358 | -0.104 | 0.85 | |
Mo/sv⁃graphene | — | 0.778 | -0.778 | 0.778 | -0.778 | — | ||||
CO+H→HCO | 2.132 | 0.312 | 0.004 | -0.316 | 2.098 | 0.045 | 0.380 | -0.425 | 0.20 |
1 | Gupta P. K., Kumar V., Maity S., J. Chem. Technol. Biotechnol., 2021, 96(4), 853—868 |
2 | Lin T. J., An Y. L., Yu F., Gong K., Yu H. L., Wang C. Q., Sun Y. H., Zhong L. S., ACS Catal., 2022, 12(19), 12092—12112 |
3 | Damma D., Smirniotis P. G., Catal. Sci. Technol., 2021, 11(16), 5412—5431 |
4 | Chen K., Li Y. B., Wang M. H., Wang Y. H., Cheng K., Zhang Q. H., Kang J. C., Wang Y., Small, 2021, 17(48), 2007527 |
5 | Chen Y. P., Wei J. T., Duyar M. S., Ordomsky V. V., Khodakov A. Y., Liu J., Chem. Soc. Rev., 2021, 50(4), 2337—2366 |
6 | Liu X. C., Liu J. J., Yang Y., Li Y. W., Wen X. D., ACS Catal., 2021, 11(4), 2156—2181 |
7 | Pei Y. P., Liu J. X., Zhao Y. H., Ding Y. J., Liu T., Dong W. D., Zhu H. J., Su H. Y., Yan L., Li J. L., Li W. X., ACS Catal., 2015, 5(6), 3620—3624 |
8 | Zhong L. S., Yu F., An Y. L., Zhao Y. H., Sun Y. H., Li Z. J., Lin T. J., Lin Y. J., Qi X. Z., Dai Y. Y., Gu L., Hu J. S., Jin S. F., Shen Q., Wang H., Nature, 2016, 538(7623), 84—87 |
9 | Zhao H. B., Liu J. X., Yang C., Yao S. Y., Su H. Y., Gao Z. R., Dong M., Wang J. H., Rykov A. I., Wang J., Hou Y., Li W. X., Ma D., CCS Chemistry, 2021, 3(11), 2712—2724 |
10 | Liu Y., Chen J. F., Bao J., Zhang Y., ACS Catal., 2015, 5(6), 3905—3909 |
11 | Shen X. F., Luo D., Ma C. W., Suo H. Y., Yan L., Zhang T. F., Liu X., Wen X. D., Li Y. W., Yang Y., Catal. Sci. Technol., 2021, 11(19), 6564—6572 |
12 | Patterson P. M., Das T. K., Davis B. H., Appl. Catal. A: Gen., 2003, 251(2), 449—455 |
13 | Chai S. H., Schwartz V., Howe J. Y., Wang X. Q., Kidder M., Overbury S. H., Dai S., Jiang D. E., Micropor. Mesopor. Mater., 2013, 170, 141—149 |
14 | Vo D. V. N., Adesina A. A., Appl. Catal. A: Gen., 2011, 399(1), 221—232 |
15 | Chang Q., Zhang C. H., Liu C. W., Wei Y. X., Cheruvathur A. V., Dugulan A. I., Niemantsverdriet J. W., Liu X. W., He Y. R., Qing M., Zheng L. R., Yun Y. F., Yang Y., Li Y. W., ACS Catal., 2018, 8(4), 3304—3316 |
16 | Liu C. C., Lin M. G., Fang K. G., Meng Y., Sun Y. H., RSC Adv., 2014, 4(40), 20948—20954 |
17 | Mo T., Xu J., Yang Y., Li Y. W., Catalysis Today, 2016, 261, 101—115 |
18 | Hao Z. J., Li X. S., Tian Y., Ding T., Yang G. H., Ma Q. X., Tsubaki N., Li X. G., Catalysts, 2021, 11(2), 230 |
19 | Dang Y. R., Li S. G., Appl. Catal. A: Gen., 2021, 610, 117945 |
20 | Li L. W., Sholl D. S., ACS Catal., 2015, 5(9), 5174—5185 |
21 | Medford A. J., Vojvodic A., Studt F., Abild⁃Pedersen F., Nørskov J. K., J. Catal., 2012, 290, 108—117 |
22 | Qi K. Z., Wang G. C., Zheng W. J., Surf. Sci., 2013, 614, 53—63 |
23 | Tominaga H., Aoki Y., Nagai M., Appl. Catal. A: Gen., 2012, 423/424, 192—204 |
24 | Wang T., Luo Q. Q., Li Y. W., Wang J. G., Beller M., Jiao H. J., Appl. Catal. A: Gen., 2014, 478, 146—156 |
25 | Tao Y., Ou H. H., Lei Y. P., Xiong Y., Chem. J. Chinese Universities, 2022, 43(5), 20220143 |
陶雨, 欧鸿辉, 雷永鹏, 熊禹. 高等学校化学学报, 2022, 43(5), 20220143 | |
26 | Zhang X. Y., Qu G., Xue D. P., Yan W. F., Zhang J. N., Chem. J. Chinese Universities, 2023, 44(5), 20220775 |
张小玉, 曲干, 薛冬萍, 闰文付, 张佳楠. 高等学校化学学报, 2023, 44(5), 20220775 | |
27 | Chen W., Wang Z., Cui Y., Li Z., Li Y., Dai X., Tang Y., New J. Chem., 2020, 44(36), 15733—15741 |
28 | Jia G. R., Ling L. X., Zhang R. G., Wang B. J., Appl. Surf. Sci., 2023, 638, 158081 |
29 | Wang W. J., Gao Y., Li H. D., Tian F. B., Li D., Cui T., Appl. Surf. Sci., 2021, 545, 148953 |
30 | Xue Z., Zhang X. Y., Qin J. Q., Liu R. P., J. Energy Chem., 2021, 57, 443—450 |
31 | Düzenli D., J. Phys. Chem. C, 2016, 120(36), 20149—20157 |
32 | Gecim G., Ozekmekci M., Fellah M. F., Comput. Theor. Chem., 2020, 1180, 112828 |
33 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams, Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 16 Rev. C.01, Wallingford, CT, 2016 |
34 | Wu C. C., Gates I. D., Mol. Catal., 2019, 469, 40—47 |
35 | Manadé M., Viñes F., Gil A., Illas F., Carbon, 2015, 95, 525—534 |
36 | Kang J., Deng H. X., Li S. S., Li J. B., J. Phys⁃Condens Mat., 2011, 23(34), 346001 |
37 | Luo H. J., Zhang L., Gong Z. J., Wu W. F., Xu S., Zhang K., Li H. J., Nanotechnol., 2020, 31(40), 405702 |
38 | Sun M. L., Ren Q. Q., Zhao Y. M., Chou J. P., Yu J., Tang W. C., Carbon, 2017, 120, 265—273 |
39 | Tang Y. N., Pan L. J., Chen W. G., Li C. G., Shen Z. G., Dai X. Q., Appl. Phys. A, 2015, 119(2), 475—485 |
40 | Thakur J., Saini H. S., Singh M., Reshak A. H., Kashyap M. K., Physica E., 2016, 78, 35—40 |
41 | Mohammadi M. D., Patsalidis N., Bhowmick S., Harmandaris V. A., Biskos G., RSC Adv., 2023, 13(26), 18014—18024 |
42 | Tian X. X., Wang T., Jiao H. J., Phys. Chem. Chem. Phys., 2017, 19(3), 2186—2192 |
43 | Young B. T., Pathan M. A. K., Jiang T., Le D., Marrow N., Nguyen T., Jordan C. E., Rahman T. S., Popolan⁃Vaida D. M., Vaida M. E., J. Chem. Phys., 2020, 152(7), 074706 |
44 | Zaman S., Smith K. J., Catal. Rev. Sci. Eng., 2012, 54(1), 41—132 |
45 | Zhao W. T., Lan X. B., Wang B. J., Fan M. H., Zhang R. G., Appl. Surf. Sci., 2023, 619, 156746 |
46 | Balyan S., Saini S., Khan T. S., Pant K. K., Gupta P., Bhattacharya S., Haider M. A., Nanoscale, 2021, 13(8), 4451—4466 |
47 | Behjatmanesh⁃Ardakani R., Mol. Catal., 2018, 455, 239—249 |
48 | Fu Z. Y., Luo D., Chen L., Wei Y. X., Ren M. Y., Wang W. J., Zhang C. H., Sun S., Catal. Sci. Technol., 2023, 13(7), 2010—2014 |
49 | Moussa S. O., Panchakarla L. S., Ho M. Q., El⁃Shall M. S., ACS Catal., 2014, 4(2), 535—545 |
[1] | LAN Xing, HE Yuting, ZHANG Qing, FANG Yanfen, DENG Anping, ZHAO Haixia, ZHANG Zhaonian. Mechanism of Hydrolysis of Microcystins Enhanced by Lewis Acid Sites on the Surface of Pyrite-Fe(Ⅲ) [J]. Chem. J. Chinese Universities, 2024, 45(7): 145. |
[2] | HE Jun, ZHU Aoyang, WEI Yuchen, ZHU Yiquan, JIANG Li, HE Xiaojun. Preparation and Zinc Storage Properties of Three-dimensional Nitrogen-doped Hierarchical Porous Carbon Nanosheets [J]. Chem. J. Chinese Universities, 2024, 45(7): 133. |
[3] | JING Huifang, LIU Yi, FANG Qiang, LANG Xuelei, HAO Genyan, ZHONG Dazhong, LI Jinping, ZHAO Qiang. Preparation of Defect Sites Rich CuAg Catalyst for CO2 Reduction to C2+ Products [J]. Chem. J. Chinese Universities, 2024, 45(7): 156. |
[4] | CHEN Xin, LIU Jingyuan, YU Jing. Preparation of Porous Carbon Nanofiber Loaded Copper-platinum Alloy Catalysts and Their Electrocatalytic Hydrogen Evolution Performance [J]. Chem. J. Chinese Universities, 2024, 45(6): 20240042. |
[5] | FENG Xueyang, WANG Yuge, HE Tiancheng, WANG Ke, PAN Lijia, CHEN Siyuan, YIN Yuan, SUN Hongguo, ZHENG Yafang, WEI Lai, SUN Zhaoyan. Influence of Processing Techniques on Carbon Black Dispersion and Mechanical Performance of Polyisoprene-based Rubbers [J]. Chem. J. Chinese Universities, 2024, 45(6): 20240045. |
[6] | LI Lin, MA Jing, XU Changlin, CHEN Tongyao, GUO Hengyao, LI Ziyou, WU Wenxin. Room Temperature Driven Sodium Humate-protected Carbon Nanoclusters for Fluorescent and Colorimetric Sensing of Ag+ and Temperature [J]. Chem. J. Chinese Universities, 2024, 45(6): 20230510. |
[7] | GAO Yongping, LIU Bai, KANG Jianing, LYU Jieqiong, YU Zeguang, ZHANG Zhihui, GAO Wenxiu. Nitrogen-doped Carbon Material MG-T Heterogeneous Catalyzed Hydrogenation of Nitrobenzene to Aniline [J]. Chem. J. Chinese Universities, 2024, 45(5): 20240040. |
[8] | WANG Ke, WANG Yuge, HE Tiancheng, FENG Xueyang, PAN Lijia, CHEN Siyuan, YIN Yuan, SUN Hongguo, ZHENG Yafang, WEI Lai, SUN Zhaoyan. Properties of Bionic Rubber Reinforced by Silica/carbon Black [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230512. |
[9] | SUI Guanghui, CHENG Yanyan. Lanthanum-supported Porous Carbon Composite Electrode Material Prepared by Rice Husk Char [J]. Chem. J. Chinese Universities, 2024, 45(4): 20240012. |
[10] | YU Moxin, SHI Wenxu, SUN Yuhang, ZHANG Chen, WANG Xiaoting. Preparation of P-doped Coal Pitch-based Porous Carbon and Its Adsorption Performance for Broad-spectrum Antibiotics in Wastewater [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230481. |
[11] | DU Qing, NIU Huibin, XU Yan, ZHANG Jing, LAN Xing, HUANG Yingping, TAN Yunzhi, CHEN Xiaoting, FANG Yanfen. Mechanism of Molecular Oxygen Activation Mediated by Hydroxyl Groups on the Surface of Red Clay [J]. Chem. J. Chinese Universities, 2024, 45(3): 20230422. |
[12] | CAO Huawen, TANG Qiufan, QU Bei, HUO Huan, ZHENG Qilong, CAO Yilin, LI Jizhen. Multi-stage Thermal Decomposition Mechanism of Energetic Plasticizer DNTN Triggered by Cleavage of the Nitrate Ester Bond [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230398. |
[13] | SHENTU Jiangtao, LI Yiwei, LU Yanrong, LI juanqin, MAO Yebing, LI Xiangyuan. Combustion Mechanism Development Based on Minimized Reaction Network Method: C2 Fuel [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230386. |
[14] | WANG Jiarui, LI Chunli, CHENG Jiahao, HAO Yaling, ZHOU Nan, YANG Peng. Functional Regulation and Mechanism of Phosphoric Acid in GO Intercalation Stage [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230410. |
[15] | WANG Fang, HAO Jianwei. Thermal Stability and Mechanical Properties of the Composite of Epoxy Resin with Ammonium Polyphosphate/Ceramic Precursor Modified Bamboo-based Porous Carbon as Synergistic Flame Retardant [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230030. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||