Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (5): 20230488.doi: 10.7503/cjcu20230488
• Polymer Chemistry • Previous Articles Next Articles
ZHOU Qiao, ZHAO Yuanyuan, GUO Liying(), SHI Yafei, ZHENG Rongrong
Received:
2023-11-28
Online:
2024-05-10
Published:
2024-04-02
Contact:
GUO Liying
E-mail:lyguo1981@163.com
Supported by:
CLC Number:
TrendMD:
ZHOU Qiao, ZHAO Yuanyuan, GUO Liying, SHI Yafei, ZHENG Rongrong. Preparation of Acidic Ionic Liquids and Their Catalytic Performance in Synthesis of Biobased Poly(ethylene 2,5-furandicarboxylate)[J]. Chem. J. Chinese Universities, 2024, 45(5): 20230488.
Sample | Amax | Unprotonated p⁃nitroaniline(%) | Protonated p⁃nitroaniline(%) | H0 |
---|---|---|---|---|
Blank | 0.192 | 100 | 0 | — |
[DA⁃2PS][Cl]2 | 0.181 | 94.27 | 5.73 | 2.18 |
[DA⁃2PS][BF4]2 | 0.178 | 92.71 | 7.29 | 2.11 |
[DA⁃2PS][H2PO4]2 | 0.147 | 76.56 | 23.44 | 1.51 |
[DA⁃2PS][PF6]2 | 0.139 | 72.40 | 27.60 | 1.40 |
[DA⁃2PS][HSO4]2 | 0.122 | 63.54 | 36.46 | 1.24 |
Table 1 Brønsted acid strength of different acidic ionic liquids
Sample | Amax | Unprotonated p⁃nitroaniline(%) | Protonated p⁃nitroaniline(%) | H0 |
---|---|---|---|---|
Blank | 0.192 | 100 | 0 | — |
[DA⁃2PS][Cl]2 | 0.181 | 94.27 | 5.73 | 2.18 |
[DA⁃2PS][BF4]2 | 0.178 | 92.71 | 7.29 | 2.11 |
[DA⁃2PS][H2PO4]2 | 0.147 | 76.56 | 23.44 | 1.51 |
[DA⁃2PS][PF6]2 | 0.139 | 72.40 | 27.60 | 1.40 |
[DA⁃2PS][HSO4]2 | 0.122 | 63.54 | 36.46 | 1.24 |
Catalyst | Con.(%) | [η]/(dL·g-1) | MV | Catalyst | Con.(%) | [η]/(dL·g-1) | MV |
---|---|---|---|---|---|---|---|
— | 92.2 | 0.14 | 3380 | [DA⁃2PS][Cl]2 | 94.8 | 0.40 | 11708 |
DBU | 93.4 | 0.38 | 11030 | [DA⁃2PS][BF4]2 | 96.1 | 0.43 | 12735 |
(CH3COO)2Mn | 94.6 | 0.41 | 12049 | [DA⁃2PS][H2PO4]2 | 96.5 | 0.45 | 13426 |
Sb2O3 | 95.3 | 0.42 | 12391 | [DA⁃2PS][PF6]2 | 97.1 | 0.47 | 14122 |
[Bmim]Cl | 92.8 | 0.29 | 8055 | [DA⁃2PS][HSO4]2 | 97.3 | 0.48 | 14473 |
[HO3S⁃(CH2)3⁃mim]⁃HSO4 | 95.2 | 0.40 | 11708 |
Table 2 Effects of catalyst types on catalytic performance
Catalyst | Con.(%) | [η]/(dL·g-1) | MV | Catalyst | Con.(%) | [η]/(dL·g-1) | MV |
---|---|---|---|---|---|---|---|
— | 92.2 | 0.14 | 3380 | [DA⁃2PS][Cl]2 | 94.8 | 0.40 | 11708 |
DBU | 93.4 | 0.38 | 11030 | [DA⁃2PS][BF4]2 | 96.1 | 0.43 | 12735 |
(CH3COO)2Mn | 94.6 | 0.41 | 12049 | [DA⁃2PS][H2PO4]2 | 96.5 | 0.45 | 13426 |
Sb2O3 | 95.3 | 0.42 | 12391 | [DA⁃2PS][PF6]2 | 97.1 | 0.47 | 14122 |
[Bmim]Cl | 92.8 | 0.29 | 8055 | [DA⁃2PS][HSO4]2 | 97.3 | 0.48 | 14473 |
[HO3S⁃(CH2)3⁃mim]⁃HSO4 | 95.2 | 0.40 | 11708 |
Level | Factor A, n(EG)/n(FDCA) | Factor B, Esterification temperature/℃ | Factor C, Polycondensation temperature/℃ | Factor D, Polycondensation time/h |
---|---|---|---|---|
1 | 1.6 | 190 | 230 | 5 |
2 | 2.0 | 200 | 240 | 6 |
3 | 2.4 | 210 | 250 | 7 |
Table 3 Factors and levels of (L934) orthogonal tests
Level | Factor A, n(EG)/n(FDCA) | Factor B, Esterification temperature/℃ | Factor C, Polycondensation temperature/℃ | Factor D, Polycondensation time/h |
---|---|---|---|---|
1 | 1.6 | 190 | 230 | 5 |
2 | 2.0 | 200 | 240 | 6 |
3 | 2.4 | 210 | 250 | 7 |
Trial number | Factor A, n(EG)/n(FDCA) | Factor B, Esterification temperature/°C | Factor C, Polycondensation temperature/°C | Factor D, Polycondensation time/h | [η]PEF/(dL·g-1) |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 0.35 |
2 | 1 | 2 | 2 | 2 | 0.55 |
3 | 1 | 3 | 3 | 3 | 0.41 |
4 | 2 | 1 | 2 | 3 | 0.50 |
5 | 2 | 2 | 3 | 1 | 0.34 |
6 | 2 | 3 | 1 | 2 | 0.58 |
7 | 3 | 1 | 3 | 2 | 0.43 |
8 | 3 | 2 | 1 | 3 | 0.52 |
9 | 3 | 3 | 2 | 1 | 0.44 |
K1 | 1.17 | 1.28 | 1.45 | 1.13 | — |
K2 | 1.42 | 1.41 | 1.49 | 1.56 | — |
K3 | 1.39 | 1.43 | 1.18 | 1.43 | — |
k1 | 0.39 | 0.43 | 0.48 | 0.38 | — |
k2 | 0.47 | 0.47 | 0.50 | 0.52 | — |
k3 | 0.46 | 0.48 | 0.39 | 0.48 | — |
R | 0.08 | 0.05 | 0.10 | 0.14 | — |
Table 4 Effects of different parameters on the catalytic process
Trial number | Factor A, n(EG)/n(FDCA) | Factor B, Esterification temperature/°C | Factor C, Polycondensation temperature/°C | Factor D, Polycondensation time/h | [η]PEF/(dL·g-1) |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 0.35 |
2 | 1 | 2 | 2 | 2 | 0.55 |
3 | 1 | 3 | 3 | 3 | 0.41 |
4 | 2 | 1 | 2 | 3 | 0.50 |
5 | 2 | 2 | 3 | 1 | 0.34 |
6 | 2 | 3 | 1 | 2 | 0.58 |
7 | 3 | 1 | 3 | 2 | 0.43 |
8 | 3 | 2 | 1 | 3 | 0.52 |
9 | 3 | 3 | 2 | 1 | 0.44 |
K1 | 1.17 | 1.28 | 1.45 | 1.13 | — |
K2 | 1.42 | 1.41 | 1.49 | 1.56 | — |
K3 | 1.39 | 1.43 | 1.18 | 1.43 | — |
k1 | 0.39 | 0.43 | 0.48 | 0.38 | — |
k2 | 0.47 | 0.47 | 0.50 | 0.52 | — |
k3 | 0.46 | 0.48 | 0.39 | 0.48 | — |
R | 0.08 | 0.05 | 0.10 | 0.14 | — |
Synthetic method | Catalyst | T5%/℃ | Tmax/℃ | Tg/℃ | Tm/℃ | Ref. |
---|---|---|---|---|---|---|
Transesterification polycondensation method | Ti@Si | 376 | 416 | 89 | 213.4 | [ |
Esterification polycondensation method | Sb2O3 | 347 | 386 | 84.1 | — | [ |
Esterification polycondensation method | SnC2O4 | 370 | 400 | 84 | 211 | [ |
Esterification polycondensation method | Tetrabutyl titanate | 379 | 400 | 89 | 210 | [ |
Transesterification polycondensation method | Antimony glycolate | 368 | 407.2 | 90.7 | 211.6 | [ |
Esterification polycondensation method | [DA⁃2PS[HSO4]2 | 372 | 418 | 88.3 | — | This paper |
Table 5 Thermal properties of PEF reported by some literautures
Synthetic method | Catalyst | T5%/℃ | Tmax/℃ | Tg/℃ | Tm/℃ | Ref. |
---|---|---|---|---|---|---|
Transesterification polycondensation method | Ti@Si | 376 | 416 | 89 | 213.4 | [ |
Esterification polycondensation method | Sb2O3 | 347 | 386 | 84.1 | — | [ |
Esterification polycondensation method | SnC2O4 | 370 | 400 | 84 | 211 | [ |
Esterification polycondensation method | Tetrabutyl titanate | 379 | 400 | 89 | 210 | [ |
Transesterification polycondensation method | Antimony glycolate | 368 | 407.2 | 90.7 | 211.6 | [ |
Esterification polycondensation method | [DA⁃2PS[HSO4]2 | 372 | 418 | 88.3 | — | This paper |
4 | Shen X. L., Wang Z. Q., Wang Q. Y., Liu S. Y., Wang G. Y., Chinese J. Polym. Sci., 2018, 36(9), 1027—1035 |
5 | An H. Z., Yang Z. F., Bi K. L., Xu F., Huo F., Li C. H., Fang W. J., Zhang Z. C., Lan X. Y., Zhang S. J., Ind. Eng. Chem. Res., 2020, 59(31), 13948—13955 |
6 | Garg M., White S. R., Sottos N. R., Acs Appl. Mater. Inter., 2019, 11(49), 46226—46232 |
7 | Laurichesse S., Avérous L., Prog. Polym. Sci., 2014, 39(7), 1266—1290 |
8 | Hong S., Min K. D., Nam B. U., Park O. O., Green Chem., 2016, 18(19), 5142—5150 |
9 | Sousa A. F., Coelho J. F., Silvestre A. J., Polymer, 2016, 98, 129—135 |
10 | Jiang M., Liu Q., Zhang Q., Ye C., Zhou G. Y., J. Polym. Sci. Pol. Chem., 2012, 50(5), 1026—1036 |
11 | Burgess S. K., Kriegel R. M., Koros W. J., Macromolecules, 2015, 48(7), 2184—2193 |
12 | Knoop R. J., Vogelzang W., van Haveren. J., van Es D. S., J. Polym. Sci. Pol. Chem., 2013, 51(19), 4191—4199 |
13 | Jia Z., Wang J. G., Sun L. Y., Zhu J., Liu X. Q., J. Appl. Polym. Sci., 2018, 135(14), 46076 |
14 | Wang J. G., Liu X. Q., Jia Z., Liu Y., Sun L. Y, Zhu J., J. Polym. Sci. Pol. Chem., 2017, 55(19), 3298—3307 |
15 | Poulopoulou N., Kasmi N., Bikiaris D. N., Papageorgiou D. G., Floudas G., Papageorgiou G. Z., Macromol. Mater. Eng., 2018, 303(8), 1800153 |
16 | Lotti N., Munari A., Gigli M., Gazzano M., Tsanaktsis V., Bikiaris D. N., Papageorgiou G. Z., Polymer, 2016, 103, 288—298 |
17 | Xie H Z., Wu L. B., Li B. G., Dubois P., Polymer, 2018, 155, 89—98 |
18 | Wang X. S., Liu S. Y., Wang Q. Y., Li J. G., Wang G. Y., Eur. Polym. J., 2018, 109, 191—197 |
19 | Martino L., Niknam V., Guigo N., van Berkel J. G., Sbirrazzuoli N., Rsc. Adv., 2016, 6(64), 59800—59807 |
20 | Miao L., Song Z. Y., Zhu D. Z., Li L. C., Gan L. H., Liu M. X., Energ. Fuel., 2021, 35(10), 8443—8455 |
21 | Yan S. R., Han F., Hou Q. N., Zhang S., Ai S. Y., Ind. Eng. Chem. Res., 2019, 58(31), 13804—13818 |
22 | Sun W., Xu F., Cheng W. G., Sun J., Ning G. Q., Zhang S. J., Chinese J. Catal., 2017, 38(5), 908—917 |
23 | Yang Z. F., Li X., Xu F., Wang W. W., Shi Y. Q., Zhang Z. C., Fang W. J., Liu L., Zhang S. J., Green Chem., 2021 , 23(1), 447—456 |
24 | Zhang Z. C., Xu F., He H. Y., Ding W. L., Fang W. J., Sun W., Zhang S. J., Green Chem., 2019, 21(14), 3891—3901 |
25 | Ding Z. X., Liang J. H., Liu Z., Shen J. C., Zhang F., Ren X. Q., Jiang M., Chem. J. Chinese Universities, 2019, 405, 1029—1036 |
丁中协, 梁金花, 刘振, 沈节灿, 张峰, 任晓乾, 姜岷. 高等学校化学学报, 2019, 40(5), 1029—1036 | |
26 | Zhao X. D., Guo L. Y., Xu T. J., Wang H. Y., Zheng R. R., Jiang Z. Z., New J. Chem., 2022, 46(33), 15901—15910 |
27 | Zhao X. D., Guo L. Y., Xu T. J., Zheng R. R., Wang H. Y., New J. Chem., 2022, 46(42), 20092—20101 |
28 | Qu X. L., Jiang M., Wang B., Deng J., Wang R., Zhang Q., Tang J., Chemsuschem., 2019, 12(22), 4927—4935 |
29 | Xu Y., Liang J. H., Ren X. Q., Jiang M., Wei P., Ouyang P. K., J. Nanjing Tech. University, 2012, 34(2), 48—52 |
徐玥, 梁金花, 任晓乾, 姜岷, 韦萍, 欧阳平凯. 南京工业大学学报, 2012, 34(2), 48—52 | |
30 | Ma C., Xu F., Cheng W. C., Tan X., Su Q., Zhang S. J., ACS Sustain. Chem. Eng., 2018, 6(2), 2684—2693 |
31 | Chen M. Q., Yang Z. L., Zhang W. T., Cao W. W., J. Anhui University of Science and Technology(Natural Science), 2014, 34(2),1—4 |
陈明强, 杨忠连, 张文涛, 曹巍巍. 安徽理工大学学报(自然科学版), 2014, 34(2),1—4 | |
32 | Shi K. Y., Guo L. Y., Zheng R. R.,Wang H. Y., Chen Y. M., Catal. Lett, 2022, 152(4), 1182—1193 |
33 | Qu X. L., Study on Synthesis and Chemical Recovery of Poly(ethylene glycol 2,5⁃furanadecarboxylate) Catalyzed by Ionic Liquid, Jilin University, Changchun, 2021 |
曲小玲. 离子液体催化合成聚2,5⁃呋喃二甲酸乙二醇酯及其化学回收的研究, 长春: 吉林大学, 2021 | |
34 | Wang J. G., Synthesis and Properties of 2,5⁃Furandicarboxylic Acid and Its Bio⁃based Aromatic Polyesters, Ningbo Institute of Materials Technology and Engineering, University of Chinese Academy of Sciences, Ningbo, 2018 |
王静刚. 基于2,5⁃呋喃二甲酸的生物基芳香聚酯合成与共聚改性研究, 宁波: 中国科学院大学宁波材料技术与工程研究所, 2018 | |
35 | Hui Y. H., Wang H., Liu F. S., Song X. Y., Petrochemical Technology, 2021, 50(2), 123—129 |
惠燕华, 王辉, 刘福胜, 宋修艳. 石油化工, 2021, 50(2), 123—129 | |
36 | Li C., Synthesis of SO3H⁃functionalized Acidic Ionic Liquids and Its Application in Biomass Conversion, Heilongjiang University, Harbin, 2022 |
李超. 磺酸功能化离子液体的合成及其在生物质转化中应用, 哈尔滨: 黑龙江大学, 2022 | |
37 | Liu X. M., Liu M., Guo X. W., Zhou J. X., Catal. Commun., 2008, 9(1), 1—7 |
38 | Jiang M., Liu Q., Li Y., Zhang Q., Zhou G. Y., Acta Polymerica Sinica, 2013, (1), 24—29 |
姜敏, 刘茜, 李洋, 张强, 周光远. 高分子学报, 2013, (1), 24—29 | |
39 | Wu J. P., Xie H. Z., Wu L. B., Li B. G., Dubois P., RSC Adv., 2016, 6(103), 101578—101586 |
40 | Xie H. Z., The Synthesis and Structure⁃peoperties of High Performance Random and Multiblock Copolymers Based on Biobased Poly(ethvlene 2,5⁃furandicarboxylate), Zhejiang University, Hangzhou, 2019 |
谢鸿洲. 基于生物基聚呋喃二甲酸乙二醇酯的高性能无规和多嵌段共聚物的合成与结构⁃性能, 杭州: 浙江大学, 2019 | |
41 | Cao X. Y., Tao L., Zhu D. Z., Xiao R., J. Donghua University(Natural Science), 2016, (6), 775—781, 815 |
曹小玉, 陶磊, 朱德振, 肖茹. 东华大学学报(自然科学版), 2016, (6), 775—781, 815 | |
42 | Zhang W. Y., Ji P., Wang Y., Wang C. S., Wang H. P., China Synthetic Fiber Industry, 2019, (5), 12—18 |
张婉迎, 吉鹏, 王宇, 王朝生, 王华平. 合成纤维工业, 2019, (5), 12—18 | |
1 | Xia Y. W., Wang G. X., Feng Y. L., Hu Y. X., Zhao G. Y., Chem. J. Chinese Universities, 2020, 41(8), 1881—1887 |
夏艺玮, 王光鑫, 冯玉林, 胡跃鑫, 赵桂艳. 高等学校化学学报, 2020, 41(8), 1881—1887 | |
2 | Fiorani G., Perosa A., Selva M., Green Chem., 2018, 20(2), 288—322 |
3 | Ochoa⁃Gomez J. R., Gil⁃Rio S., Maestro⁃Madurga B., Gomez⁃Jimenez⁃Aberasturi O., Arab. J. Chem., 2019, 12(8), 4764—4774 |
[1] | ZHANG Lu, LIU Jie, LOU Shenghui, JIANG Hui, WANG Song, LI Sanxi, TANG Tao, ZHANG Ailing. Synergistic Flame-retardant Epoxy Resin Using Quaternary Phosphate Naphthalene Sulfonate Ionic Liquid and Dimethyl Methylphosphonate [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230467. |
[2] | QIN Haijing, HE Qianjun, XU Minmin, YUAN Yaxian, YAO Jianlin. Electrochemical-SERS Investigation on the Decarboxylated Reaction of PMBA in Ionic Liquid and Influence of Interfacial Water [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230349. |
[3] | CUI Wei, ZHAO Deyin, BAI Wenxuan, ZHANG Xiaodong, YU Jiang. CO2 Absorption in Composite of Aprotic Solvent and Iron-based Ionic Liquid [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220120. |
[4] | PENG Kuilin, LI Guilin, JIANG Chongyang, ZENG Shaojuan, ZHANG Xiangping. Research Progress for the Role of Electrolytes in the CO2 Electrochemical Reduction [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220238. |
[5] | JI Shuangqi, JIN Zhao, GUAN Wenna, PAN Xiangyu, GUAN Tong. Preparation and Chromatographic Performance of Mixed-mode Silica Stationary Phase Modified by Double Cationic Ionic Liquid and Octadecyl Group [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220008. |
[6] | CHANG Sihui, CHEN Tao, ZHAO Liming, QIU Yongjun. Thermal Degradation Mechanism of Bio-based Polybutylactam Plasticized by Ionic Liquids [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220353. |
[7] | WAN Ren, SONG Fan, PENG Changjun, LIU Honglai. Group Contribution Method for Infinite Dilution Molar Conductivity of Unconventional Ions in Water [J]. Chem. J. Chinese Universities, 2021, 42(12): 3672. |
[8] | WANG Man, WANG Xin, ZHOU Jing, GAO Guohua. Efficient Synthesis of Dimethyl Carbonate via Transesterification of Methanol and Ethylene Carbonate Catalyzed by Poly(ionic liquid)s [J]. Chem. J. Chinese Universities, 2021, 42(12): 3701. |
[9] | ZHOU Molin, JIANG Xin, YI Ting, YANG Xiangguang, ZHANG Yibo. Improvement of Interface Stability Between Sulfide Solid Electrolyte Li10GeP2S12 and Lithium Metal [J]. Chem. J. Chinese Universities, 2020, 41(8): 1810. |
[10] | CHENG Shifu,HU Hao,CHEN Bihua,WU Haihong,GAO Guohua,HE Mingyuan. Preparation and Electrochemical Performance of Porous Carbons Prepared from Binary Ionic Liquids [J]. Chem. J. Chinese Universities, 2020, 41(5): 1048. |
[11] | GAO Chong,YU Fengli,XIE Congxia,YU Shitao. Baeyer-Villiger Oxidation of Cyclic Ketones Catalyzed by Amino Alcohol Heteropoly Acid Ionic Liquid [J]. Chem. J. Chinese Universities, 2020, 41(5): 1101. |
[12] | GAO Naiwei, MA Qiang, HE Yonglin, WANG Yapei. Green Electronic Devices Based on Ionic Liquids [J]. Chem. J. Chinese Universities, 2020, 41(5): 901. |
[13] | PIAO Huilan,MA Pinyi,QIN Zucheng,JIANG Yanxiao,SUN Ying,WANG Xinghua,SONG Daqian. Determination of Triazine Herbicides from Fruit Juice Samples Using Effervescence Assisted Microextraction Method Based on Acidic Ionic Liquid Packed Syringe [J]. Chem. J. Chinese Universities, 2020, 41(2): 228. |
[14] | ZHANG Li,QIAN Mingchao,LIU Xueke,Gao Shuaitao,YU Jiang,XIE Haishen,WANG Hongbin,SUN Fengjiang,SU Xianghong. Dynamic Study of Oxidative Desulfurization by Iron-based Ionic Liquids/NHD † [J]. Chem. J. Chinese Universities, 2020, 41(2): 317. |
[15] | WANG Nan,YAO Kaisheng,ZHAO Chenchen,LI Tianjin,LU Weiwei. Ionic Liquid-assisted Synthesis of AuPd Nanosponges and Their Catalytic Performance † [J]. Chem. J. Chinese Universities, 2020, 41(1): 62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||