Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (4): 20230467.doi: 10.7503/cjcu20230467
• Polymer Chemistry • Previous Articles Next Articles
ZHANG Lu1,2, LIU Jie2(), LOU Shenghui2, JIANG Hui1,2, WANG Song1, LI Sanxi1, TANG Tao2, ZHANG Ailing1(
)
Received:
2023-11-10
Online:
2024-04-10
Published:
2024-02-21
Contact:
LIU Jie, ZHANG Ailing
E-mail:liujie@ciac.ac.cn;zhangal718@sina.com
Supported by:
CLC Number:
TrendMD:
ZHANG Lu, LIU Jie, LOU Shenghui, JIANG Hui, WANG Song, LI Sanxi, TANG Tao, ZHANG Ailing. Synergistic Flame-retardant Epoxy Resin Using Quaternary Phosphate Naphthalene Sulfonate Ionic Liquid and Dimethyl Methylphosphonate[J]. Chem. J. Chinese Universities, 2024, 45(4): 20230467.
Sample | T5%/℃ | Tmax/℃ | Mass fraction at 800 ℃(%) |
---|---|---|---|
EP | 351 | 383 | 13.5 |
EP/10%DMMP | 261 | 361 | 20.4 |
EP/10%[TBP]NS | 319 | 385 | 14.9 |
EP/4%[TBP]NS/6%DMMP | 283 | 366 | 21.8 |
EP/6%[TBP]NS/4%DMMP | 276 | 373 | 21.2 |
Table 1 TG and DTG data of the cured epoxy resins under nitrogen atmosphere
Sample | T5%/℃ | Tmax/℃ | Mass fraction at 800 ℃(%) |
---|---|---|---|
EP | 351 | 383 | 13.5 |
EP/10%DMMP | 261 | 361 | 20.4 |
EP/10%[TBP]NS | 319 | 385 | 14.9 |
EP/4%[TBP]NS/6%DMMP | 283 | 366 | 21.8 |
EP/6%[TBP]NS/4%DMMP | 276 | 373 | 21.2 |
Sample | LOI(%) | UL-94 | |||
---|---|---|---|---|---|
t1/s | t2/s | Drip | Rating | ||
EP | 26.5 | >60 | — | No | NR |
EP/10%DMMP | 43.9 | 15.2 | 10.4 | No | V⁃1 |
EP/10%[TBP]NS | 37.1 | 7.2 | 1.3 | No | V⁃0 |
EP/4%[TBP]NS/6%DMMP | 40.1 | 6.1 | 25.2 | No | NR |
EP/6%[TBP]NS/4%DMMP | 38.7 | 3.6 | 4.5 | No | V⁃0 |
Table 2 Detailed UL-94 and LOI data of EP and its composites
Sample | LOI(%) | UL-94 | |||
---|---|---|---|---|---|
t1/s | t2/s | Drip | Rating | ||
EP | 26.5 | >60 | — | No | NR |
EP/10%DMMP | 43.9 | 15.2 | 10.4 | No | V⁃1 |
EP/10%[TBP]NS | 37.1 | 7.2 | 1.3 | No | V⁃0 |
EP/4%[TBP]NS/6%DMMP | 40.1 | 6.1 | 25.2 | No | NR |
EP/6%[TBP]NS/4%DMMP | 38.7 | 3.6 | 4.5 | No | V⁃0 |
Sample | TTI/s | PHRR/(kW·m-2) | THR/(MJ·m-2) | PSPR/(m2·s) | TSP/m2 | PCOP/(g·s-1) | CR*(%) |
---|---|---|---|---|---|---|---|
EP | 63 | 1281 | 86 | 0.430 | 39.8 | 0.058 | 9.7 |
EP/10%DMMP | 62 | 586 | 49 | 0.550 | 41.0 | 0.045 | 17.2 |
EP/10%[TBP]NS | 55 | 738 | 48 | 0.448 | 42.0 | 0.033 | 12.4 |
EP/4%[TBP]NS/6%DMMP | 58 | 569 | 55 | 0.339 | 37.0 | 0.04 | 15.8 |
EP/6%[TBP]NS/4%DMMP | 60 | 530 | 50 | 0.380 | 39.0 | 0.033 | 19.1 |
Table 3 CCT data of EP and EP composites(50 kW/m2)
Sample | TTI/s | PHRR/(kW·m-2) | THR/(MJ·m-2) | PSPR/(m2·s) | TSP/m2 | PCOP/(g·s-1) | CR*(%) |
---|---|---|---|---|---|---|---|
EP | 63 | 1281 | 86 | 0.430 | 39.8 | 0.058 | 9.7 |
EP/10%DMMP | 62 | 586 | 49 | 0.550 | 41.0 | 0.045 | 17.2 |
EP/10%[TBP]NS | 55 | 738 | 48 | 0.448 | 42.0 | 0.033 | 12.4 |
EP/4%[TBP]NS/6%DMMP | 58 | 569 | 55 | 0.339 | 37.0 | 0.04 | 15.8 |
EP/6%[TBP]NS/4%DMMP | 60 | 530 | 50 | 0.380 | 39.0 | 0.033 | 19.1 |
Sample | Storage modulus at 30 ℃/MPa | νe/(mol·m-3) | Tg/℃ |
---|---|---|---|
EP | 1630 | 3496 | 176 |
EP/10%DMMP | 2480 | 3107 | 143 |
EP/10%[TBP]NS | 2530 | 2714 | 147 |
EP/4%[TBP]NS/6%DMMP | 2710 | 2617 | 134 |
EP/6%[TBP]NS/4%DMMP | 2500 | 2635 | 137 |
Table 4 DMA data of EP and EP composites
Sample | Storage modulus at 30 ℃/MPa | νe/(mol·m-3) | Tg/℃ |
---|---|---|---|
EP | 1630 | 3496 | 176 |
EP/10%DMMP | 2480 | 3107 | 143 |
EP/10%[TBP]NS | 2530 | 2714 | 147 |
EP/4%[TBP]NS/6%DMMP | 2710 | 2617 | 134 |
EP/6%[TBP]NS/4%DMMP | 2500 | 2635 | 137 |
10 | Khan A. S., Man Z., Bustam M. A., Nasrullah A., Ullah Z., Sarwono A., Shah F. U., Muhammad N., Carbohydr. Polym., 2018, 181, 208—214 |
11 | Ou M. Y., Lian R. C., Cui J. H., Guan H. C., Liu L., Jiao C. M., Chen X. L., Chemosphere, 2023, 311, 137061 |
12 | Xiao F., Wu K., Luo F. B., Guo Y. Y., Zhang S. H., Du X. X., Zhu Q. Q., Lu M. G., J. Mater. Sci., 2017, 52, 13992—14003 |
13 | Shi Y. Q., Fu T., Xu Y. J., Li D. F., Wang X. L., Wang Y. Z., Chem. Eng. J., 2018, 354, 208—219 |
14 | Moon J., Kang H., RSC Adv., 2023, 13, 8291—8298 |
15 | Zhang J. M., Zhang S. J., Dong K., Zhang Y. Q., Shen Y. Q., Lv X. M., Chem. Eur. J., 2006, 12, 4021—4026 |
16 | Qiu X. Q., Li Z. W., Li X. H., Zhang Z. J., Compos. Commun., 2022, 35, 101282 |
17 | Li X. J., Guo R. S., Qian X. D., Front. Mater., 2021, 8, 646509 |
18 | Chen Z. Q., Jiang M. W., Zhang Q. W., Yu Y., Sun G. P., Jiang J. C., Int. J. Polym. Anal. Charact., 2017, 22, 509—518 |
19 | Zhou H. H., Tan S., Wang C. H., Wu Y., Polym. Degrad. Stabil., 2022, 195, 109789 |
20 | Zhu Y., Yu R. H., Wang S. D., Xing H. P., Qiu J., Liu J., Tang T., Chem. Eng. J., 2022, 446, 136742 |
21 | Zou J. H., Duan H. J., Chen Y. S., Ji S., Cao J. F., Ma H. R., Compos. Part B Eng., 2020, 199, 108228 |
22 | Lou S. H., Yu R. H., Wang S. D., Fan P. H., Liu J., Tang T., Polymer, 2023, 268, 125715 |
23 | Levchik S. V., Weil E. D., Polym. Int., 2005, 54, 981—998 |
24 | Wang P., Xia L., Jian R. K., Ai Y. F., Zheng X. L., Chen G. L., Wang J. S., Polym. Degrad. Stabil., 2018, 149, 69—77 |
25 | Liu Z., Zhao Y., Tang Q. L., Zhang K. X., Deng W. H., Zhang L. W., Wang R., Chen J., Deng J. J., Wang L., Wang Q. W., Chen M. J., Liu Z. G., Polym. Adv. Technol., 2021, 32, 2940—2952 |
26 | Yi C. X., Xu C. B., Sun N., Xu J., Ma M., Shi Y. Q., He H. W., Chen S., Wang X., ACS Appl. Polym. Mater., 2023, 5, 846—855 |
27 | Jian R. K., Ai Y. F., Xia L., Zhang Z. P., Wang D. Y., Compos. Part B Eng., 2019, 168, 458—466 |
28 | Wang S., Ma S. Q., Xu C. X., Liu Y., Dai J. Y., Wang Z. B., Liu X. Q., Chen J., Shen X. B., Wei J. J., Zhu J., Macromolecules, 2017, 50, 1892—1901 |
1 | Wang F., Hao J. W., Chem. J. Chinese Universities, 2023, 44(8), 20230030 |
王芳, 郝建薇. 高等学校化学学报, 2023, 44(8), 20230030 | |
2 | Rakotomalala M., Wagner S., Döring M., Materials, 2010, 3, 4300—4327 |
3 | Wang S., Meng L. C., Chen Q., Li S. X., Zhang A. L., J. Appl. Polym. Sci., 2023, 140, e54608 |
4 | Fu Z. A., Wang H. T., Zhao X. W., Li X., Gu X. Y., Li Y. J., J. Mater. Chem. A, 2019, 7, 4903—4912 |
5 | Maddela N. R., Venkateswarlu K., Megharaj M., Environ. Sci.: Processes Impacts, 2020, 22, 1809—1827 |
6 | Gaan S., Sun G., Hutches K., Engelhard M. H., Polym. Degrad. Stabil., 2008, 93, 99—108 |
7 | Zheng T. C., Ni X. Y., RSC Adv., 2016, 6, 57122—57130 |
8 | Fan P. H., Liu J., Lou S. H., Tang T., Chinese J. Applied Chem., 2023, 40(5), 653—665 |
范鹏辉, 刘杰, 娄生辉, 唐涛. 应用化学, 2023, 40(5), 653—665 | |
9 | Yoshida Y., Kitagawa H., ACS Appl. Electron. Mater., 2021, 3, 2468—2482 |
[1] | TANG Gang, TAO Yi, DENG Dan, ZHANG Dongxin, ZHANG Shihua, LIU Xiuyu, WU Qiang, SHEN Haifeng, SUN Junjie. Synthesis of Furan-based Phosphaphenanthrene Flame Retardant and Its Application in Anti-flammable Epoxy Thermosets [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230494. |
[2] | QIN Haijing, HE Qianjun, XU Minmin, YUAN Yaxian, YAO Jianlin. Electrochemical-SERS Investigation on the Decarboxylated Reaction of PMBA in Ionic Liquid and Influence of Interfacial Water [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230349. |
[3] | WANG Fang, HAO Jianwei. Thermal Stability and Mechanical Properties of the Composite of Epoxy Resin with Ammonium Polyphosphate/Ceramic Precursor Modified Bamboo-based Porous Carbon as Synergistic Flame Retardant [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230030. |
[4] | CUI Wei, ZHAO Deyin, BAI Wenxuan, ZHANG Xiaodong, YU Jiang. CO2 Absorption in Composite of Aprotic Solvent and Iron-based Ionic Liquid [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220120. |
[5] | PENG Kuilin, LI Guilin, JIANG Chongyang, ZENG Shaojuan, ZHANG Xiangping. Research Progress for the Role of Electrolytes in the CO2 Electrochemical Reduction [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220238. |
[6] | JI Shuangqi, JIN Zhao, GUAN Wenna, PAN Xiangyu, GUAN Tong. Preparation and Chromatographic Performance of Mixed-mode Silica Stationary Phase Modified by Double Cationic Ionic Liquid and Octadecyl Group [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220008. |
[7] | CHANG Sihui, CHEN Tao, ZHAO Liming, QIU Yongjun. Thermal Degradation Mechanism of Bio-based Polybutylactam Plasticized by Ionic Liquids [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220353. |
[8] | DONG Luming, SU Yanyue, WANG Chunzheng, QIAO Yafei, CHEN Yajun, MA Haiyun. Synthesis of Micro- to Nano-scale Perovskite Calcium Hydroxytinate and Its Performance as a Flame Retardant in Epoxy Resin [J]. Chem. J. Chinese Universities, 2021, 42(3): 937. |
[9] | WANG Man, WANG Xin, ZHOU Jing, GAO Guohua. Efficient Synthesis of Dimethyl Carbonate via Transesterification of Methanol and Ethylene Carbonate Catalyzed by Poly(ionic liquid)s [J]. Chem. J. Chinese Universities, 2021, 42(12): 3701. |
[10] | WAN Ren, SONG Fan, PENG Changjun, LIU Honglai. Group Contribution Method for Infinite Dilution Molar Conductivity of Unconventional Ions in Water [J]. Chem. J. Chinese Universities, 2021, 42(12): 3672. |
[11] | WANG Peng, MAO Dan, WAN Jiawei, QI Qi, DU Jiang, WANG Dan. Effect of Hollow Multi-shelled TiO2 on Mechanical Properties of Epoxy Resin Composites [J]. Chem. J. Chinese Universities, 2021, 42(10): 3218. |
[12] | ZHOU Molin, JIANG Xin, YI Ting, YANG Xiangguang, ZHANG Yibo. Improvement of Interface Stability Between Sulfide Solid Electrolyte Li10GeP2S12 and Lithium Metal [J]. Chem. J. Chinese Universities, 2020, 41(8): 1810. |
[13] | GAO Chong,YU Fengli,XIE Congxia,YU Shitao. Baeyer-Villiger Oxidation of Cyclic Ketones Catalyzed by Amino Alcohol Heteropoly Acid Ionic Liquid [J]. Chem. J. Chinese Universities, 2020, 41(5): 1101. |
[14] | GAO Naiwei, MA Qiang, HE Yonglin, WANG Yapei. Green Electronic Devices Based on Ionic Liquids [J]. Chem. J. Chinese Universities, 2020, 41(5): 901. |
[15] | CHENG Shifu,HU Hao,CHEN Bihua,WU Haihong,GAO Guohua,HE Mingyuan. Preparation and Electrochemical Performance of Porous Carbons Prepared from Binary Ionic Liquids [J]. Chem. J. Chinese Universities, 2020, 41(5): 1048. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||