Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (9): 20230166.doi: 10.7503/cjcu20230166
• Review • Previous Articles Next Articles
LI Yaokai, GUAN Shitao, ZUO Lijian, CHEN Hongzheng()
Received:
2023-04-01
Online:
2023-09-10
Published:
2023-09-08
Contact:
CHEN Hongzheng
E-mail:hzchen@zju.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Yaokai, GUAN Shitao, ZUO Lijian, CHEN Hongzheng. Approaches to Achieving High-performance Semitransparent Organic Solar Cells[J]. Chem. J. Chinese Universities, 2023, 44(9): 20230166.
Active layer | PCE(%) | AVT(%) | LUE(%) | CRI | Ref. | |
---|---|---|---|---|---|---|
Tandem | FAPbBr x Cl3-x & PCE10∶6TIC⁃4F | 10.55 | 52.91 | 5.66 | 68 | [ |
Ternary | PM6∶BTP⁃eC9∶L8⁃BO | 11.44 | 46.79 | 5.35 | 85.39 | [ |
PM6∶BTP⁃eC9∶L8⁃BO | 12.95 | 38.67 | 5.0 | 73.61 | [ | |
PCE⁃10∶BT⁃CIC∶TT⁃FIC | 8.0 | 44.2 | 3.56 | 87 | [ | |
PM6∶Y6⁃BO∶2PACz | 11.3 | 30.0 | 3.39 | — | [ | |
PBOF∶BTP⁃eC9∶L8⁃BO | 10.01 | 30.48 | 3.05 | — | [ | |
PM6∶Y6∶DTNIF | 13.49 | 22.58 | 3.04 | — | [ | |
PM6∶Y6∶BTTPC | 12.3 | 23.45 | 2.88 | — | [ | |
PBDB⁃T∶Y1∶PTAA | 11.7 | 20.1 | 2.35 | — | [ | |
PM6-Ir1∶BTP⁃eC9∶PC71BM | 16.44 | 12.75 | 2.09 | 93.1 | [ | |
PCE10∶J71∶IHIC | 9.37 | 21.4 | 2.00 | 97 | [ | |
PBT1⁃S∶PCE10∶PC71BM | 9.2 | 20 | 1.84 | — | [ | |
J52∶IEICO⁃4F∶PC71BM | 7.75 | 19.9 | 1.54 | — | [ | |
Binary | PCE10⁃2F∶Y6 | 10.01 | 50.05 | 5.01 | — | [ |
PCE⁃10∶A078 | 10.8 | 45.7 | 5.0 | 86 | [ | |
PCE10⁃BDT2F⁃0.8∶Y6 | 10.85 | 41.08 | 4.46 | 76.35 | [ | |
PM6∶L8⁃BO | 12.8 | 34.55 | 4.42 | 87 | [ | |
PCE10∶H3 | 8.38 | 50.09 | 4.19 | 76.85 | [ | |
PCE10∶FOIC | 10.3 | 37.4 | 3.85 | — | [ | |
PBT1⁃C⁃2Cl∶Y6 | 9.1 | 40.1 | 3.65 | — | [ | |
PCE10∶IHIC | 9.77 | 36 | 3.51 | — | [ | |
PM6∶Y6 | 12.88 | 25.6 | 3.3 | 97.6 | [ | |
PCE10∶IUIC | 10.2 | 31 | 3.16 | — | [ | |
PBNS∶IT⁃4F | 9.83 | 32 | 3.14 | — | [ | |
PCE10∶BTCIC | 7.1 | 43 | 3.05 | 91 | [ | |
PM6∶ITIC⁃4F | 11.20 | 26.22 | 2.93 | 97.5 | [ | |
PCE10∶ACS8 | 11.1 | 28.6 | 2.89 | 84 | [ | |
PCE10∶IEICO⁃4F | 4.06 | 70.6 | 2.86 | 86.3 | [ | |
PCE10∶ATT2 | 7.7 | 31 | 2.39 | — | [ | |
PCE10∶IEICO⁃4F | 9.48 | 23.7 | 2.24 | — | [ | |
PCE10∶IEICO⁃4Cl | 8.38 | 25.6 | 2.14 | — | [ | |
PCE10∶FNIC2 | 9.51 | 20.3 | 1.93 | 83 | [ | |
J71∶IT⁃M | 7.23 | 25.05 | 1.81 | 79.2 | [ | |
PBDTTT⁃E⁃T∶IEICO | 6.5 | 25 | 1.62 | — | [ | |
J71∶IEICO⁃4F | 4.45 | 27.26 | 1.21 | 61.0 | [ |
Table 1 Photovoltaic and optical performance parameters of recently reported high-performance semitransparent organic photovoltaics
Active layer | PCE(%) | AVT(%) | LUE(%) | CRI | Ref. | |
---|---|---|---|---|---|---|
Tandem | FAPbBr x Cl3-x & PCE10∶6TIC⁃4F | 10.55 | 52.91 | 5.66 | 68 | [ |
Ternary | PM6∶BTP⁃eC9∶L8⁃BO | 11.44 | 46.79 | 5.35 | 85.39 | [ |
PM6∶BTP⁃eC9∶L8⁃BO | 12.95 | 38.67 | 5.0 | 73.61 | [ | |
PCE⁃10∶BT⁃CIC∶TT⁃FIC | 8.0 | 44.2 | 3.56 | 87 | [ | |
PM6∶Y6⁃BO∶2PACz | 11.3 | 30.0 | 3.39 | — | [ | |
PBOF∶BTP⁃eC9∶L8⁃BO | 10.01 | 30.48 | 3.05 | — | [ | |
PM6∶Y6∶DTNIF | 13.49 | 22.58 | 3.04 | — | [ | |
PM6∶Y6∶BTTPC | 12.3 | 23.45 | 2.88 | — | [ | |
PBDB⁃T∶Y1∶PTAA | 11.7 | 20.1 | 2.35 | — | [ | |
PM6-Ir1∶BTP⁃eC9∶PC71BM | 16.44 | 12.75 | 2.09 | 93.1 | [ | |
PCE10∶J71∶IHIC | 9.37 | 21.4 | 2.00 | 97 | [ | |
PBT1⁃S∶PCE10∶PC71BM | 9.2 | 20 | 1.84 | — | [ | |
J52∶IEICO⁃4F∶PC71BM | 7.75 | 19.9 | 1.54 | — | [ | |
Binary | PCE10⁃2F∶Y6 | 10.01 | 50.05 | 5.01 | — | [ |
PCE⁃10∶A078 | 10.8 | 45.7 | 5.0 | 86 | [ | |
PCE10⁃BDT2F⁃0.8∶Y6 | 10.85 | 41.08 | 4.46 | 76.35 | [ | |
PM6∶L8⁃BO | 12.8 | 34.55 | 4.42 | 87 | [ | |
PCE10∶H3 | 8.38 | 50.09 | 4.19 | 76.85 | [ | |
PCE10∶FOIC | 10.3 | 37.4 | 3.85 | — | [ | |
PBT1⁃C⁃2Cl∶Y6 | 9.1 | 40.1 | 3.65 | — | [ | |
PCE10∶IHIC | 9.77 | 36 | 3.51 | — | [ | |
PM6∶Y6 | 12.88 | 25.6 | 3.3 | 97.6 | [ | |
PCE10∶IUIC | 10.2 | 31 | 3.16 | — | [ | |
PBNS∶IT⁃4F | 9.83 | 32 | 3.14 | — | [ | |
PCE10∶BTCIC | 7.1 | 43 | 3.05 | 91 | [ | |
PM6∶ITIC⁃4F | 11.20 | 26.22 | 2.93 | 97.5 | [ | |
PCE10∶ACS8 | 11.1 | 28.6 | 2.89 | 84 | [ | |
PCE10∶IEICO⁃4F | 4.06 | 70.6 | 2.86 | 86.3 | [ | |
PCE10∶ATT2 | 7.7 | 31 | 2.39 | — | [ | |
PCE10∶IEICO⁃4F | 9.48 | 23.7 | 2.24 | — | [ | |
PCE10∶IEICO⁃4Cl | 8.38 | 25.6 | 2.14 | — | [ | |
PCE10∶FNIC2 | 9.51 | 20.3 | 1.93 | 83 | [ | |
J71∶IT⁃M | 7.23 | 25.05 | 1.81 | 79.2 | [ | |
PBDTTT⁃E⁃T∶IEICO | 6.5 | 25 | 1.62 | — | [ | |
J71∶IEICO⁃4F | 4.45 | 27.26 | 1.21 | 61.0 | [ |
Device structure | LUE(%) | Ref. |
---|---|---|
ITO/PEDOT∶PSS/PM6∶L8⁃BO∶BTP⁃eC9 /Bis⁃FIMG/Ag/TeO2 | 5.0 | [ |
ITO/PEDOT∶PSS/PCE10∶H3/ZnO NP/PEI/Ag/TeO2 | 4.06 | [ |
(LiF/TeO2)4 /glass/ITO/PEDOT∶PSS/PM6∶BTP⁃eC9∶L8⁃BO(0.8∶1∶0.2)/PDINN/Ag(12nm)/(LiF/TeO2)8/LiF | 5.35 | [ |
MgF2/SiO2 /ITO/ZnO/PCE10∶A078/MoO3/Ag(16nm)/CBP/MgF2/CBP/MgF2 | 5.0 | [ |
MgF2 /ITO/PEDOT∶PSS/PCE10⁃BDT2F⁃0.8∶Y6/PDINO/Ag(15 nm)/MoO3 | 4.46 | [ |
MgF2/SiO2 /ITO/ZnO/NSM/PCE‐10∶BT‐CIC∶TT‐FIC/MoO3/Cu⁃Ag(16nm)/(CBP/MgF2)2(SiNxSiO2)x | 3.56 | [ |
ITO/PEDOT∶PSS/PM6∶Y6 BTTPC/PFN⁃Br/Ag(14nm)/LiF/MoO3 | 2.88 | [ |
ITO/PEDOT∶PSS/PCE10∶IFIC⁃i⁃F/Bis⁃FIMG/Ag(16 nm)/(LiF/TeO2)2 | 2.15 | [ |
ITO/PEDOT∶PSS/PM6∶m⁃BTPPhC6∶BO⁃4Cl/PFNBr/Ag(14nm)/ MoO3/LiF/MoO3 | 3.58 | [ |
ITO/PEDOT∶PSS/Active layer/Au(0.8 nm)/Ag(15 nm)/(MoO3/LiF)3 pairs | 2.00 | [ |
Table 2 Optical engineering of semitransparent organic solar cells
Device structure | LUE(%) | Ref. |
---|---|---|
ITO/PEDOT∶PSS/PM6∶L8⁃BO∶BTP⁃eC9 /Bis⁃FIMG/Ag/TeO2 | 5.0 | [ |
ITO/PEDOT∶PSS/PCE10∶H3/ZnO NP/PEI/Ag/TeO2 | 4.06 | [ |
(LiF/TeO2)4 /glass/ITO/PEDOT∶PSS/PM6∶BTP⁃eC9∶L8⁃BO(0.8∶1∶0.2)/PDINN/Ag(12nm)/(LiF/TeO2)8/LiF | 5.35 | [ |
MgF2/SiO2 /ITO/ZnO/PCE10∶A078/MoO3/Ag(16nm)/CBP/MgF2/CBP/MgF2 | 5.0 | [ |
MgF2 /ITO/PEDOT∶PSS/PCE10⁃BDT2F⁃0.8∶Y6/PDINO/Ag(15 nm)/MoO3 | 4.46 | [ |
MgF2/SiO2 /ITO/ZnO/NSM/PCE‐10∶BT‐CIC∶TT‐FIC/MoO3/Cu⁃Ag(16nm)/(CBP/MgF2)2(SiNxSiO2)x | 3.56 | [ |
ITO/PEDOT∶PSS/PM6∶Y6 BTTPC/PFN⁃Br/Ag(14nm)/LiF/MoO3 | 2.88 | [ |
ITO/PEDOT∶PSS/PCE10∶IFIC⁃i⁃F/Bis⁃FIMG/Ag(16 nm)/(LiF/TeO2)2 | 2.15 | [ |
ITO/PEDOT∶PSS/PM6∶m⁃BTPPhC6∶BO⁃4Cl/PFNBr/Ag(14nm)/ MoO3/LiF/MoO3 | 3.58 | [ |
ITO/PEDOT∶PSS/Active layer/Au(0.8 nm)/Ag(15 nm)/(MoO3/LiF)3 pairs | 2.00 | [ |
25 | Hu Z., Wang J., Ma X., Gao J., Xu C., Wang X., Zhang X., Wang Z., Zhang F., J. Mater. Chem. A, 2021, 9(11), 6797—6804 |
26 | Yu K., Song W., Ge J., Zheng K., Xie L., Chen Z., Qiu Y., Hong L., Liu C., Ge Z., Science China Chemistry, 2022, 65(8), 1615—1622 |
27 | Cheng H. W., Zhao Y. P., Yang Y., Adv. Energy Mater., 2022, 12(3), 3 |
28 | Xie D. S., Zhang Y., Yuan X. Y., Li Y. L., Huang F., Cao Y., Duan C. H., Adv. Funct. Mater., 2022, 2212601 |
29 | Huang X. X., Zhang L. F., Cheng Y. J., Oh J., Li C. Q., Huang B., Zhao L., Deng J. W., Zhang Y. H., Liu Z. J., Wu F. Y., Hu X. T., Yang C., Chen L., Chen Y. W., Adv. Funct. Mater., 2022, 32(5), 2108634 |
30 | Xin L., Zhong Z. P., Zhu R. H., Yu J. S., Li G., Joule, 2022, 6(8), 1918—1930 |
31 | Li Y., Ji C., Qu Y., Huang X., Hou S., Li C. Z., Liao L. S., Guo L. J., Forrest S. R., Adv. Mater., 2019, 31(40), 1903173 |
32 | Jing J., Dong S., Zhang K., Zhou Z., Xue Q., Song Y., Du Z., Ren M., Huang F., Adv. Energy Mater., 2022, 12(20), 2200453 |
33 | Yin P., Yin Z. G., Ma Y. L., Zheng Q. D., Energy Environ. Sci., 2020, 13(12), 5177—5185 |
34 | Wang D., Qin R., Zhou G., Li X., Xia R., Li Y., Zhan L., Zhu H., Lu X., Yip H. L., Chen H., Li C. Z., Adv. Mater., 2020, 32(32), 2001621 |
35 | Cheng P., Wang H. C., Zhu Y., Zheng R., Li T., Chen C. H., Huang T., Zhao Y., Wang R., Meng D., Li Y., Zhu C., Wei K. H., Zhan X., Yang Y., Adv. Mater., 2020, 32(39), 2003891 |
36 | Yuan X. X., Sun R., Wu Y., Wang T., Wang Y. H., Wang W., Yu Y., Guo J., Wu Q., Min J., Adv. Funct. Mater., 2022, 32(22), 2200107 |
37 | Zhang J., Xu G., Tao F., Zeng G., Zhang M., Yang Y. M., Li Y., Li Y., Adv. Mater., 2019, 31(10), 1807159 |
38 | Xie Y. P., Huo L. J., Fan B. B., Fu H. T., Cai Y. H., Zhang L., Li Z. Y., Wang Y., Ma W., Chen Y. W., Sun Y. M., Adv. Funct. Mater., 2018, 28(49), 1800627 |
39 | Shi H., Xia R. X., Zhang G. C., Yip H. L., Cao Y., Adv. Energy Mater., 2019, 9(5), 1803438 |
40 | Zhang Y. N., Zheng J. W., Jiang Z. Y., He X. J., Kim J., Xu L. H., Qin M. C., Lu X. H., Kyaw A. K. K., Choy W. C. H., Adv. Energy Mater., 2023, 13(7), 2203266 |
41 | Li T., Dai S., Ke Z., Yang L., Wang J., Yan C., Ma W., Zhan X., Adv. Mater., 2018, 30(10), 1705969 |
42 | Xie Y. P., Cai Y. H., Zhu L., Xia R. X., Ye L. L., Feng X., Yip H. L., Liu F., Lu G. H., Tan S. T., Sun Y. M., Adv. Funct. Mater., 2020, 30(28), 2002181 |
43 | Wu Y., Yang H., Zou Y., Dong Y. Y., Yuan J. Y., Cui C. H., Li Y. F., Energy Environ. Sci., 2019, 12(2), 675—683 |
44 | Meng R. Q., Jiang Q. Q., Liu D. Y., npj Flexible Electronics, 2022, 6(1), 39 |
45 | Liu F., Zhou Z., Zhang C., Zhang J., Hu Q., Vergote T., Liu F., Russell T. P., Zhu X., Adv. Mater., 2017, 29(21), 1606574 |
46 | Hu Z., Wang Z., Zhang F., J. Mater. Chem. A, 2019, 7(12), 7025—7032 |
47 | Sun C., Xia R. X., Shi H., Yao H. F., Liu X., Hou J. H., Huang F., Yip H. L., Cao Y., Joule, 2018, 2(9), 1816—1826 |
48 | Ma X. L., Xiao Z., An Q. S., Zhang M., Hu Z. H., Wang J. X., Ding L. M., Zhang F. J., J. Mater. Chem. A, 2018, 6(43), 21485—21492 |
49 | Zhan L., Li S., Lau T. K., Cui Y., Lu X., Shi M., Li C. Z., Li H., Hou J., Chen H., Energy Environ. Sci., 2020, 13(2), 635—645 |
50 | Yin Y. L., Zhan L. L., Liu M., Yang C. Q., Guo F., Liu Y., Gao S., Zhao L. C., Chen H. Z., Zhang Y., Nano Energy, 2021, 90, 106538 |
51 | Zhang K. N., Guo J. J., Zhang L. J., Qin C. C., Yin H., Gao X. Y., Hao X. T., Adv. Funct. Mater., 2021, 31(20), 2170141 |
52 | Liu X., Liu Z., Chen M., Wang Q., Pan F., Liu H., Zhang L., Chen J., Macromol. Rapid Commun., 2022, 43(22), 2200199 |
53 | Liu W., Sun S., Zhou L., Cui Y., Zhang W., Hou J., Liu F., Xu S., Zhu X., Angew. Chem., 2022, 61(19), 202116111 |
54 | Luo M., Zhao C., Yuan J., Hai J., Cai F., Hu Y., Peng H., Bai Y., Tan Z. A., Zou Y., Mater. Chem. Front., 2019, 3(11), 2483—2490 |
55 | Xu L. F., Xu Z. W., Lin J. P. , Wang L. Q., Chin. J. Polym. Sci., 2022, 40(1), 29—37 |
56 | Zhan L., Li S., Xia X., Li Y., Lu X., Zuo L., Shi M., Chen H., Adv. Mater., 2021, 33(12), 2007231 |
57 | Liu S., Li H., Wu X., Chen D., Zhang L., Meng X., Tan L., Hu X., Chen Y., Adv. Mater., 2022, 34(23), 2201604 |
58 | Wang H. C., Cheng P., Tan S., Chen C. H., Chang B., Tsao C. S., Chen L. Y., Hsieh C. A., Lin Y. C., Cheng H. W., Yang Y., Wei K. H., Adv. Energy Mater., 2021, 11(13), 2003576 |
59 | Li Y., Meng L., Yang Y. M., Xu G., Hong Z., Chen Q., You J., Li G., Yang Y., Li Y., Nat. Commun., 2016, 7(1), 10214 |
60 | Li Y., Mao L., Gao Y., Zhang P., Li C., Ma C., Tu Y., Cui Z., Chen L., Sol. Energy Mater. Sol. Cells, 2013, 113, 85—89 |
61 | Song W., Fan X., Xu B., Yan F., Cui H., Wei Q., Peng R., Hong L., Huang J. , Ge Z., Adv. Mater., 2018, 30(26), 1800075 |
62 | Zhang Y. N., He X. J., Babu D., Li W. H., Gu X. Y., Shan C. W., Kyaw A. K. K., Choy W. C. H., Adv. Optical Mater., 2021, 9(8), 2002108 |
63 | Li Y. W., Xu G. Y., Cui C. H., Li Y. F., Adv. Energy Mater., 2018, 8(7), 1701791 |
64 | Chen F., Cheng N., Zhao J. W., Song Y. T., Sun Y. Y., Lou X. L., Tong X. Y., Chem. J. Chinese Universities, 2021, 42(6), 1891—1898 |
陈峰, 程娜, 赵健伟, 宋易恬, 孙燕燕, 娄鑫梨, 童夏燕. 高等学校化学学报, 2021, 42(6), 1891—1898 | |
65 | Yun J., Adv. Funct. Mater., 2017, 27(18), 1606641 |
66 | Kang H., Jung S., Jeong S., Kim G., Lee K., Nat. Commun., 2015, 6(1), 6503 |
67 | Xu G., Hu X., Liao X., Chen Y., Chin. J. Polym. Sci., 2021, 39(11), 1441—1447 |
68 | Li X., Xia R. X., Yan K. R., Yip H. L., Chen H. Z., Li C. Z., Chin. Chem. Lett., 2020, 31(6), 1608—1611 |
69 | Yan K. R. , Li C. Z., Macromol. Chem. Phys., 2019, 220(10), 1900084 |
70 | Yan K. R., Liu Z. X., Li X., Chen J. H., Chen H. Z. , Li C. Z., Organic Chemistry Frontiers, 2018, 5(19), 2845—2851 |
71 | Shi H., Xia R. X., Sun C., Xiao J. Y., Wu Z. H., Huang F., Yip H. L., Cao Y., Adv. Energy Mater., 2017, 7(20), 1701121 |
72 | Chang C. Y., Zuo L. J., Yip H. L., Li C. Z., Li Y. X., Hsu C. S., Cheng Y. J., Chen H. Z., Jen A. K. Y., Adv. Energy Mater., 2014, 4(7), 1301645 |
73 | Chen S., Yao H., Hu B., Zhang G., Arunagiri L., Ma L. K., Huang J., Zhang J., Zhu Z., Bai F., Ma W., Yan H., Adv. Energy Mater., 2018, 8(31), 1800529 |
1 | Tai Q., Yan F., Adv. Mater., 2017, 29(34), 1700192 |
2 | Yang C. C., Liu D. Y., Bates M., Barr M. C., Lunt R. R., Joule, 2019, 3(8), 1803—1809 |
3 | Traverse C. J., Pandey R., Barr M. C. , Lunt R. R., Nat. Energy, 2017, 2(11), 849—860 |
4 | Zuo L., Shi X., Fu W. , Jen A. K., Adv. Mater., 2019, 31(36), e1901683 |
5 | Chen Z., Ma S. S., Zhang K., Hu Z. C., Yin Q. W., Huang F. , Cao Y., Chin. J. Polym. Sci., 2021, 39(1), 35—42 |
6 | Wang T., Sun R., Yang X. R., Wu Y., Wang W., Li Q., Zhang C. F. , Min J., Chin. J. Polym. Sci., 2022, 40(8), 877—888 |
7 | Wu X. Y., Liu L. L., Xie Z. Q., Ma Y. G., Chem. J. Chinese Universities, 2016, 37(3), 409—425 |
吴小龑, 刘琳琳, 解增旗, 马於光. 高等学校化学学报, 2016, 37(3), 409—425 | |
8 | Ren J., Shu X., Wang Y., Wang D., Wu G., Zhang X., Jin Q., Liu J., Wu Z., Xu Z., Li C. Z., Li H., Chin. Chem. Lett., 2022, 33(4), 1650—1658 |
9 | Guan S., Li Y., Yan K., Fu W., Zuo L., Chen H., Adv. Mater., 2022, 34(41), 2205844 |
10 | Huang X., Cheng Y., Fang Y., Zhang L., Hu X., Jeong S. Y., Zhang H., Woo H. Y., Wu F. , Chen L., Energy Environ. Sci., 2022, 15(11), 4776—4788 |
11 | Li Y., Guo X., Peng Z., Qu B., Yan H., Ade H., Zhang M., Forrest S. R., PNAS, 2020, 117(35), 21147—21154 |
12 | Liu X., Zhong Z., Zhu R., Yu J. , Li G., Joule, 2022, 6(8), 1918—1930 |
13 | Li Y. K., He C. L., Zuo L. J., Zhao F., Zhan L. L., Li X., Xia R. X., Yip H. L., Li C. Z., Liu X., Chen H. Z., Adv. Energy Mater., 2021, 11(11), 2003408 |
74 | Betancur R., Romero⁃Gomez P., Martinez⁃Otero A., Elias X., Maymo M., Martorell J., Nat. Photonics, 2013, 7(12), 995—1000 |
75 | Yu W. J., Shen L., Shen P., Meng F. X., Long Y. B., Wang Y. N., Lv T. Y., Ruan S. P., Chen G. H., Sol. Energy Mater. Sol. Cells, 2013, 117, 198—202 |
76 | Yu W., Shen L., Shen P., Long Y., Sun H., Chen W., Ruan S., ACS Appl. Mater. Interfaces, 2014, 6(1), 599—605 |
77 | Zheng X., Zuo L., Zhao F., Li Y., Chen T., Shan S., Yan K., Pan Y., Xu B., Li C. Z., Shi M., Hou J., Chen H., Adv. Mater., 2022, 34(17), e2200044 |
78 | Xia R. X., Brabec C. J., Yip H. L., Cao Y., Joule, 2019, 3(9), 2241—2254 |
79 | Zhao F., Zuo L., Li Y., Zhan L., Li S., Li X., Xia R., Yip H. L., Chen H., Solar RRL, 2021, 5(9), 2100339 |
80 | Wang D., Li Y. H., Zhou G. Q., Gu E., Xia R. X., Yan B. Y., Yao J. Z., Zhu H. M., Lu X. H., Yip H. L., Chen H. Z., Li C. Z., Energy Environ. Sci., 2022, 15(6), 2629—2637 |
81 | Chen K. S., Salinas J. F., Yip H. L., Huo L., Hou J. , Jen A. K. Y., Energy Environ. Sci., 2012, 5(11), 9551—9557 |
82 | Zhong J., Xiao Z., Liang W., Wu Y., Ye Q., Xu H., Deng H., Shen L., Feng X., Long Y., ACS Appl. Mater. Interfaces, 2019, 11(51), 47992—48001 |
83 | Lu J. H., Yu Y. L., Chuang S. R., Yeh C. H., Chen C. P., J. Phys. Chem. C, 2016, 120(8), 4233—4239 |
84 | Kim Y., Son J., Shafian S., Kim K., Hyun J. K., Adv. Optical Mater., 2018, 6(13), 1800051 |
85 | Han D., Han S., Bu Z., Deng Y., Liu C., Guo W., Solar RRL, 2022, 6(9), 2200441 |
86 | Li X., Xia R. X., Yan K. R., Ren J., Yip H. L., Li C. Z., Chen H. Z., ACS Energy Lett., 2020, 5(10), 3115—3123 |
14 | Wang W., Yan C., Lau T. K., Wang J., Liu K., Fan Y., Lu X., Zhan X., Adv. Mater., 2017, 29(31), 1701308 |
15 | Jia B., Dai S., Ke Z., Yan C., Ma W. , Zhan X., Chem. Mater., 2017, 30(1), 239—245 |
16 | Li Y., Lin J. D., Che X., Qu Y., Liu F., Liao L. S., Forrest S. R., J. Am. Chem. Soc., 2017, 139(47), 17114—17119 |
17 | Wang J., Zhang J., Xiao Y., Xiao T., Zhu R., Yan C., Fu Y., Lu G., Lu X., Marder S. R., Zhan X., J. Am. Chem. Soc., 2018, 140(29), 9140—9147 |
18 | Chen J., Li G. D., Zhu Q. L., Guo X., Fan Q. P., Ma W., Zhang M. J., J. Mater. Chem. A, 2019, 7(8), 3745—3751 |
19 | Cui Y., Yang C., Yao H., Zhu J., Wang Y., Jia G., Gao F., Hou J., Adv. Mater., 2017, 29(43), 1703080 |
20 | Zhan L., Li S., Li Y., Sun R., Min J., Chen Y., Fang J., Ma C. Q., Zhou G., Zhu H., Zuo L., Qiu H., Yin S., Chen H., Adv. Energy Mater., 2022, 12(39), 2201076 |
21 | Zhan L., Yin S., Li Y., Li S., Chen T., Sun R., Min J., Zhou G., Zhu H., Chen Y., Fang J., Ma C. Q., Xia X., Lu X., Qiu H., Fu W., Chen H., Adv. Mater., 2022, 34(45), 2206269 |
22 | Chong K., Xu X., Meng H., Xue J., Yu L., Ma W., Peng Q., Adv. Mater., 2022, 34(13), 2109516 |
23 | Sun R., Wu Y., Yang X., Gao Y., Chen Z., Li K., Qiao J., Wang T., Guo J., Liu C., Adv. Mater., 2022, 34(26), 2110147 |
24 | Bai Y., Zhao C., Chen X., Zhang S., Zhang S., Hayat T., Alsaedi A., Tan Z. a., Hou J., Li Y., J. Mater. Chem. A, 2019, 7(26), 15887—15894 |
87 | Wang D., Liu H. R., Li Y. H., Zhou G. Q., Zhan L. L., Zhu H. M., Lu X. H., Chen H. Z. , Li C. Z., Joule, 2021, 5(4), 945—957 |
88 | Liu Y., Cheng P., Li T., Wang R., Li Y., Chang S. Y., Zhu Y., Cheng H. W., Wei K. H., Zhan X., Sun B. , Yang Y., ACS Nano, 2019, 13(2), 1071—1077 |
89 | Fan J. Y., Liu Z. X., Rao J., Yan K., Chen Z., Ran Y., Yan B., Yao J., Lu G., Zhu H., Li C. Z., Chen H., Adv. Mater., 2022, 34(28), 2110569 |
90 | Liu X., Zhao Y. S., Yu J. S., Zhu R. H., Mater. Chem. Front., 2021, 5(23), 8197—8205 |
91 | Cui Y., Wang Y., Bergqvist J., Yao H., Xu Y., Gao B., Yang C., Zhang S., Inganäs O., Gao F., Hou J., Nat. Energy, 2019, 4(9), 768—775 |
92 | Cui Y., Yao H. F., Xu Y., Bi P. Q., Zhang J. Q., Zhang T., Hong L., Chen Z. H., Wei Z. X., Hao X. T., Hou J. H., Chin. J. Polym. Sci., 2022, 40(8), 979—988 |
93 | Meng X., Xing Z., Hu X., Chen Y., Chin. J. Polym. Sci., 2022, 40(12), 1522—1566 |
[1] | BAI Yuanqing, ZHANG Jiabin, LIU Chunchen, HU Zhicheng, ZHANG Kai, HUANG Fei. Alkyl Chain Engineering of Bithiophene Imide-based Polymer Donor for Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230271. |
[2] | ZHENG Haolin, LIU Wuyue, ZHU Xiaozhang. Research Progress of Semitransparent Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230365. |
[3] | LI Wei, CHEN Chen, LIU Dan, WANG Tao. Hierarchical Aggregates of Non-fullerene Electron Acceptors [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230160. |
[4] | MA Yifan, ZHANG Yamin, GAN Shengmin, ZHANG Yuchen, FEI Xian, WANG Ting, ZHANG Zeqi, GONG Xuezhu, ZHANG Haoli. Ternary Organic Photovoltaic Devices Based on Wide-band Gap Small Molecule Donor Third Component [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230170. |
[5] | ZHANG Liting, QIU Dingding, ZHANG Jianqi, LYU Kun, WEI Zhixiang. Z-configuration A-DA'D-A Type Acceptor with Thermal Annealing Induced High Open Circuit Voltage [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230164. |
[6] | WANG Jiacheng, CAI Guilong, ZHANG Yajing, WANG Jiayu, LU Xinhui, ZHAN Xiaowei, CHEN Xingguo. Simple Modulation of Side-chains of Near-infrared Absorbing Non-fullerene Acceptor for Higher Short-circuit Current Density [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230163. |
[7] | ZHANG Lifu, WANG Xinkang, CHEN Yiwang. New Strategy to Balance the Miscibility and Phase Separation to Improve Organic Solar Cells Efficiency [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230177. |
[8] | WANG Jiarui, YU Runnan, TAN Zhan’ao. Recent Advances in the Application of Metal Complexes for Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230150. |
[9] | TIAN Mei, ZHANG Zhiyang, ZHAN Chuanlang. Fused-benzotriazole Based p-Type Polymers: Fine-tuning on Absorption Band-width and Bandgap via Backbone Thiophene and Selenophene Strategies [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230190. |
[10] | LI Hao, YANG Chenyi, LI Jiayao, ZHANG Shaoqing, HOU Jianhui. Efficient Organic Solar Cells Based on Acceptor1-acceptor2 Type Polymer Donor [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230157. |
[11] | ZHANG Yu, CHEN Jiehuan, ZHOU Jiadong, LIU Linlin, XIE Zengqi. Aggregation Morphology of Perylene Bisimide Acceptors and the Role on Exciton Processes and Electron Transport in Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230092. |
[12] | SHI Shiling, JIANG Hanxi, TU Xueyang, XIAN Kaihu, HAN Dexia, LI Yanru, YAO Xiang, YE Long, FEI Zhuping. Synthesis and Photovoltaic Properties of Non-fullerene Acceptors Based on Aryl-substituted Imide End Groups [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230182. |
[13] | GUO Ziqi, JIAO Cancan, WU Simin, MENG Lingxian, SUN Yanna, KE Xin, WAN Xiangjian, CHEN Yongsheng. Effect of Substitution Positions of Alkyl Chains in Small Molecular Donor Bridged Units on the Performance of Photovoltaic Devices [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230180. |
[14] | ZAFAR Saud uz, ZHANG Weichao, YANG Shuo, LI Shilin, ZHANG Yingyu, ZHANG Yuan, ZHANG Hong, ZHOU Huiqiong. Beta-alanine as a Dual Modification Additive in Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230185. |
[15] | YANG Hang, FAN Chenling, CUI Naizhe, LI Xiaoxiao, ZHANG Wenjing, CUI Chaohua. Cooperative Effect of Solvent Additive and Solvent Vapor Annealing on High-performance Thick-film Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||