Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (9): 20230271.doi: 10.7503/cjcu20230271
• Article • Previous Articles Next Articles
BAI Yuanqing, ZHANG Jiabin, LIU Chunchen(), HU Zhicheng, ZHANG Kai, HUANG Fei(
)
Received:
2023-06-06
Online:
2023-09-10
Published:
2023-07-29
Contact:
LIU Chunchen, HUANG Fei
E-mail:mscliu@scut.edu.cn;msfhuang@scut.edu.cn
Supported by:
CLC Number:
TrendMD:
BAI Yuanqing, ZHANG Jiabin, LIU Chunchen, HU Zhicheng, ZHANG Kai, HUANG Fei. Alkyl Chain Engineering of Bithiophene Imide-based Polymer Donor for Organic Solar Cells[J]. Chem. J. Chinese Universities, 2023, 44(9): 20230271.
Fig.3 Normalized UV⁃Vis absorption spectra of pBDT⁃BTI⁃EH and pBDT⁃BTI⁃ME in chloroform solutions(A) and as thin films(B), temperature⁃dependent absorption spectra of pBDT⁃BTI⁃ME(C) and pBDT⁃BTI⁃EH(D) in chlorobenzene solution, cyclic voltammetry curves of polymer pBDT⁃BTI⁃EH and pBDT⁃BTI⁃ME(E) and energy level diagram of pBDT⁃BTI⁃EH, pBDT⁃BTI⁃ME and Y6(F)
Polymer donor | λmax, Sol/nm | λmax, Film/nm | λonset, Film/nm | 10-4ɛ/cm-1 | EHOMOb /eV | ELUMOc /eV | |
---|---|---|---|---|---|---|---|
pBDT⁃BTI⁃EH | 575 | 593 | 655 | 4.9 | 1.89 | -5.51 | -3.58 |
pBDT⁃BTI⁃ME | 611 | 605 | 655 | 5.0 | 1.89 | -5.52 | -3.56 |
Table 1 Optical properties and energy levels of pBDT-BTI-EH and pBDT-BTI-ME
Polymer donor | λmax, Sol/nm | λmax, Film/nm | λonset, Film/nm | 10-4ɛ/cm-1 | EHOMOb /eV | ELUMOc /eV | |
---|---|---|---|---|---|---|---|
pBDT⁃BTI⁃EH | 575 | 593 | 655 | 4.9 | 1.89 | -5.51 | -3.58 |
pBDT⁃BTI⁃ME | 611 | 605 | 655 | 5.0 | 1.89 | -5.52 | -3.56 |
Active layer | VOC/V | JSC/(mA·cm-2) | FF(%) | PCE(%) | 103 μh/(cm2·V-1·s-1) | 103 μe/(cm2·V-1·s-1) | μh/μe | |
---|---|---|---|---|---|---|---|---|
pBDT⁃BTI⁃EH∶Y6 | 0.87 | 18.66 | 18.33 | 56.43 | 9.31 | 1.33 | 0.211 | 6.30 |
pBDT⁃BTI⁃ME∶Y6 | 0.83 | 25.48 | 24.43 | 73.20 | 15.69 | 8.98 | 2.35 | 3.82 |
Table 2 Photovoltaic parameters of the optimized devices
Active layer | VOC/V | JSC/(mA·cm-2) | FF(%) | PCE(%) | 103 μh/(cm2·V-1·s-1) | 103 μe/(cm2·V-1·s-1) | μh/μe | |
---|---|---|---|---|---|---|---|---|
pBDT⁃BTI⁃EH∶Y6 | 0.87 | 18.66 | 18.33 | 56.43 | 9.31 | 1.33 | 0.211 | 6.30 |
pBDT⁃BTI⁃ME∶Y6 | 0.83 | 25.48 | 24.43 | 73.20 | 15.69 | 8.98 | 2.35 | 3.82 |
1 | Lu L., Zheng T., Wu Q., Schneider A. M., Zhao D., Yu L., Chem. Rev., 2015, 115(23), 12666—12731 |
2 | Zhang G., Zhao J., Chow P. C. Y., Jiang K., Zhang J., Zhu Z., Zhang J., Huang F., Yan H., Chem. Rev., 2018, 118(7), 3447—3507 |
3 | Li Y., Acc. Chem. Res., 2012, 45(5), 723—733 |
4 | Zhang G., Lin F. R., Qi F., Heumüller T., Distler A., Egelhaaf H. J., Li N., Chow P. C. Y., Brabec C. J., Jen A. K. Y., Yip H. L., Chem. Rev., 2022, 122(18), 14180—14274 |
5 | Yao H., Hou J., Angew. Chem. Int. Ed., 2022, 61(37), e202209021 |
6 | Huang F., Bo Z. S., Geng Y. H., Wang X. H., Wang L. X., Ma Y. G., Hu W. P., Pei J., Dong H. L., Wang S. Li Z., Shuai Z. G., Li Y. F, Cao Y., Acta Polymerica Sinico, 2019, 50(10), 988—1046 |
黄飞, 薄志山, 耿延候, 王献红, 王利祥, 马於光, 侯剑辉, 胡文平, 裴坚, 董焕丽, 王树, 李振, 帅志刚, 李永舫, 曹镛. 高分子学报, 2019, 50(10), 988—1046 | |
7 | Liu C., Bai Y., Hu Z., Huang F., Sci. Sin. Chim., 2022, 52(11), 1948—2000 |
8 | Cui Y., Xu Y., Yao H., Bi P., Hong L., Zhang J., Zu Y., Zhang T., Qin J., Ren J., Chen Z., He C., Hao X., Wei Z., Hou J., Adv. Mater., 2021, 33(41), 2102420 |
9 | Chong K., Xu X., Meng H., Xue J., Yu L., Ma W., Peng Q., Adv. Mater., 2022, 34(13), 2109516 |
10 | Zhu L., Zhang M., Xu J., Li C., Yan J., Zhou G., Zhong W., Hao T., Song J., Xue X., Zhou Z., Zeng R., Zhu H., Chen C. C., MacKenzie R. C. I., Zou Y., Nelson J., Zhang Y., Sun Y., Liu F., Nat. Mater., 2022, 21(6), 656—663 |
11 | Pang B., Liao C., Xu X., Yu L., Li R., Peng Q., Adv. Mater., 2023, 35(21), 2300631 |
12 | Fu J., Fong P. W. K., Liu H., Huang C. S., Lu X., Lu S., Abdelsamie M., Kodalle T., Sutter⁃Fella C. M., Yang Y., Li G., Nat. Commun., 2023, 14(1), 1760 |
13 | Wang J., Wang Y., Bi P., Chen Z., Qiao J., Li J., Wang W., Zheng Z., Zhang S., Hao X., Hou J., Adv. Mater., 2023, 35(25), 2301583 |
14 | Li S., Li C. Z., Shi M., Chen H., ACS Energy Lett., 2020, 5(5), 1554—1567 |
15 | Yao H., Wang J., Xu Y., Zhang S., Hou J., Acc. Chem. Res., 2020, 53(4), 822—832 |
16 | Mishra A., Energy Environ. Sci., 2020, 13(12), 4738—4793 |
17 | Liu Y., Liu B., Ma C. Q., Huang F., Feng G., Chen H., Hou J., Yan L., Wei Q., Luo Q., Bao Q., Ma W., Liu W., Li W., Wan X., Hu X., Han Y., Li Y., Zhou Y., Zou Y., Chen Y., Li Y., Chen Y., Tang Z., Hu Z., Zhang Z. G., Bo Z., Sci. China Chem., 2022, 65(2), 224—268 |
18 | Song A., Huang Q., Zhang C., Tang H., Zhang K., Liu C., Huang F., Cao Y., J. Semicond., 2023, 44(8), 082202 |
19 | Park S., Kim T., Yoon S., Koh C. W., Woo H. Y., Son H. J., Adv. Mater., 2020, 32(51), 2002217 |
20 | Li Z., Ying L., Zhu P., Zhong W., Li N., Liu F., Huang F., Cao Y., Energy Environ. Sci., 2019, 12(1), 157—163 |
21 | Liu Y., Liu B., Ma C. Q., Huang F., Feng G., Chen H., Hou J., Yan L., Wei Q., Luo Q., Bao Q., Ma W., Liu W., Li W., Wan X., Hu X., Han Y., Li Y., Zhou Y., Zou Y., Chen Y., Liu Y., Meng L., Li Y., Chen Y., Tang Z., Hu Z., Zhang Z. G., Bo Z., Sci. China Chem., 2022, 65(8), 1457—1497 |
22 | Dong Y., Cha H., Bristow H. L., Lee J., Kumar A., Tuladhar P. S., McCulloch I., Bakulin A. A., Durrant J. R., J. Am. Chem. Soc., 2021, 143(20), 7599—7603 |
23 | Karuthedath S., Gorenflot J., Firdaus Y., Chaturvedi N., De Castro C. S. P., Harrison G. T., Khan J. I., Markina A., Balawi A. H., Peña T. A. D., Liu W., Liang R. Z., Sharma A., Paleti S. H. K., Zhang W., Lin Y., Alarousu E., Anjum D. H., Beaujuge P. M., De Wolf S., McCulloch I., Anthopoulos T. D., Baran D., Andrienko D., Laquai F., Nat. Mater., 2021, 20(3), 378—384 |
24 | Yuan J., Zhang Y., Zhou L., Zhang G., Yip H. L., Lau T. K., Lu X., Zhu C., Peng H., Johnson P. A., Leclerc M., Cao Y., Ulanski J., Li Y., Zou Y., Joule, 2019, 3(4), 1140—1151 |
25 | Li S., Zhan L., Jin Y., Zhou G., Lau T. K., Qin R., Shi M., Li C. Z., Zhu H., Lu X., Zhang F., Chen H., Adv. Mater., 2020, 32(24), 2001160 |
26 | Luo Z., Ma R., Chen Z., Xiao Y., Zhang G., Liu T., Sun R., Zhan Q., Zou Y., Zhong C., Chen Y., Sun H., Chai G., Chen K., Guo X., Min J., Lu X., Yang C., Yan H., Adv. Energy Mater., 2020, 10(44), 2002649 |
27 | Lai H., Zhao Q., Chen Z., Chen H., Chao P., Zhu Y., Lang Y., Zhen N., Mo D., Zhang Y., He F., Joule, 2020, 4(3), 688—700 |
28 | Chen Y., Ma R., Liu T., Xiao Y., Kim H. K., Zhang J., Ma C., Sun H., Bai F., Guo X., Wong K. S., Lu X., Yan H., Adv. Energy Mater., 2021, 11(20), 2003777 |
29 | Chai G., Chang Y., Zhang J., Xu X., Yu L., Zou X., Li X., Chen Y., Luo S., Liu B., Bai F., Luo Z., Yu H., Liang J., Liu T., Wong K. S., Zhou H., Peng Q., Yan H., Energy Environ. Sci., 2021, 14(6), 3469—3479 |
30 | Chen Y., Bai F., Peng Z., Zhu L., Zhang J., Zou X., Qin Y., Kim H. K., Yuan J., Ma L. K., Zhang J., Yu H., Chow P. C. Y., Huang F., Zou Y., Ade H., Liu F., Yan H., Adv. Energy Mater., 2021, 11(3), 2003141 |
31 | Li C., Zhou J., Song J., Xu J., Zhang H., Zhang X., Guo J., Zhu L., Wei D., Han G., Min J., Zhang Y., Xie Z., Yi Y., Yan H., Gao F., Liu F., Sun Y., Nat. Energy, 2021, 6(6), 605—613 |
32 | Chen S., Hong L., Dong M., Deng W., Shao L., Bai Y., Zhang K., Liu C., Wu H., Huang F., Angew. Chem. Int. Ed., 2023, 62(1), 202213869 |
33 | Zhu C., Yuan J., Cai F., Meng L., Zhang H., Chen H., Li J., Qiu B., Peng H., Chen S., Hu Y., Yang C., Gao F., Zou Y., Li Y., Energy Environ. Sci., 2020, 13(8), 2459—2466 |
34 | Zhou Z., Liu W., Zhou G., Zhang M., Qian D., Zhang J., Chen S., Xu S., Yang C., Gao F., Zhu H., Liu F., Zhu X., Adv. Mater., 2020, 32(4), 1906324 |
35 | Liu S., Yuan J., Deng W. Y., Luo M., Xie Y., Liang Q. B., Zou Y. P., He Z. C., Wu H. B., Cao Y., Nat. Photonics, 2020, 14(5), 300—305 |
36 | Liang H., Chen H., Wang P., Zhu Y., Zhang Y., Feng W., Ma K., Lin Y., Ma Z., Long G., Li C., Kan B., Yao Z., Zhang H., Wan X., Chen Y., Adv. Funct. Mater., 2023, doi: 10.1002/adfm.202301573 |
37 | Liu Q., Jiang Y., Jin K., Qin J., Xu J., Li W., Xiong J., Liu J., Xiao Z., Sun K., Yang S., Zhang X., Ding L., Sci. Bull., 2020, 65(4), 272—275 |
38 | Cui C., Li Y., Energy Environ. Sci., 2019, 12(11), 3225—3246 |
39 | He K., Kumar P., Yuan Y., Li Y., Mater. Adv., 2021, 2(1), 115—145 |
40 | Lee C., Lee S., Kim G. U., Lee W., Kim B. J., Chem. Rev., 2019, 119(13), 8028—8086 |
41 | Hu Y., Li L., Wang X., Ma D., Huang F., Chin. Chem. Lett., 2021, 32(3), 1017—1019 |
42 | Zhao W., Qian D., Zhang S., Li S., Inganäs, O., Gao, F., Hou, J., Adv. Mater., 2016, 28(23), 4734—4739 |
43 | Fan B., Zhang K., Jiang X. F., Ying L., Huang F., Cao Y., Adv. Mater., 2017, 29(21), 1606396 |
44 | Zhu C., Meng L., Zhang J., Qin S., Lai W., Qiu B., Yuan J., Wan Y., Huang W., Li Y., Adv. Mater., 2021, 33(23), 2100474 |
45 | Wang Y., Yan Z., Guo H., Uddin M. A., Ling S., Zhou X., Su H., Dai J., Woo H. Y., Guo X., Angew. Chem. Int. Ed., 2017, 56(48), 15304—15308 |
46 | Shi Y., Guo H., Qin M., Zhao J., Wang Y., Wang H., Wang Y., Facchetti A., Lu X., Guo X., Adv. Mater., 2018, 30(10), 1705745 |
47 | Feng K., Zhang X., Wu Z., Shi Y., Su M., Yang K., Wang Y., Sun H., Min J., Zhang Y., Cheng X., Woo H. Y., Guo X., ACS Appl. Mater. Interfaces, 2019, 11(39), 35924—35934 |
48 | Zhou N., Guo X., Ortiz R. P., Li S., Zhang S., Chang R. P. H., Facchetti A., Marks T. J., Adv. Mater., 2012, 24(17), 2242—2248 |
49 | Zhou N., Guo X., Ortiz R. P., Harschneck T., Manley E. F., Lou S. J., Hartnett P. E., Yu X., Horwitz N. E., Burrezo P. M., Aldrich T. J., López Navarrete J. T., Wasielewski M. R., Chen L. X., Chang R. P. H., Facchetti A., Marks T. J., J. Am. Chem. Soc., 2015, 137(39), 12565—12579 |
50 | Sun H., Yu H., Shi Y., Yu J., Peng Z., Zhang X., Liu B., Wang J., Singh R., Lee J., Li Y., Wei Z., Liao Q., Kan Z., Ye L., Yan H., Gao F., Guo X., Adv. Mater., 2020, 32(43), 2004183 |
51 | Li B., Yang K., Liao Q., Wang Y., Su M., Li Y., Shi Y., Feng X., Huang J., Sun H., Guo X., Adv. Funct. Mater., 2021, 31(21), 2100332 |
52 | Chen W., Shi Y., Wang Y., Feng X., Djurišić A. B., Woo H. Y., Guo X., He Z., Nano Energy, 2020, 68, 104363 |
53 | Feng K., Guo H., Wang J., Shi Y., Wu Z., Su M., Zhang X., Son J. H., Woo H. Y., Guo X., J. Am. Chem. Soc., 2021, 143(3), 1539—1552 |
54 | Xu J., Feng H., Liang Y., Tang H., Tang Y., Du Z., Hu Z., Huang F., Cao Y., J. Energy Chem., 2022, 66, 382—389 |
55 | Letizia J. A., Salata M. R., Tribout C. M., Facchetti A., Ratner M. A., Marks T. J., J. Am. Chem. Soc., 2008, 130(30), 9679—9694 |
56 | Guo X., Zhou N., Lou S. J., Hennek J. W., Ponce Ortiz R., Butler M. R., Boudreault P. L. T., Strzalka J., Morin P. O., Leclerc M., López Navarrete J. T., Ratner M. A., Chen L. X., Chang R. P. H., Facchetti A., Marks T. J., J. Am. Chem. Soc., 2012, 134(44), 18427—18439 |
57 | Wang G., Swick S. M., Matta M., Mukherjee S., Strzalka J. W., Logsdon J. L., Fabiano S., Huang W., Aldrich T. J., Yang T., Timalsina A., Powers⁃Riggs N., Alzola J. M., Young R. M., DeLongchamp D. M., Wasielewski M. R., Kohlstedt K. L., Schatz G. C., Melkonyan F. S., Facchetti A., Marks T. J., J. Am. Chem. Soc., 2019, 141(34), 13410—13420 |
58 | Bai Y., Zhou Z., Xue Q., Liu C., Li N., Tang H., Zhang J., Xia X., Zhang J., Lu X., Brabec C. J., Huang F., Adv. Mater., 2022, 34(49), 2110587 |
59 | Schilinsky P., Waldauf C., Brabec C. J., Appl. Phys. Lett., 2002, 81(20), 3885—3887 |
60 | Koster L. J. A., Mihailetchi V. D., Ramaker R., Blom P. W. M., Appl. Phys. Lett., 2005, 86(12), 123509 |
61 | Mihailetchi V. D., Koster L. J. A., Hummelen J. C., Blom P. W. M., Phys. Rev. Lett., 2004, 93(21), 216601 |
62 | Proctor C. M., Kim C., Neher D., Nguyen T. Q., Adv. Funct. Mater., 2013, 23(28), 3584—3594 |
63 | Jia T., Zhang J., Zhang K., Tang H., Dong S., Tan C. H., Wang X., Huang F., J. Mater. Chem. A, 2021, 9(14), 8975—8983 |
[1] | WANG Jiacheng, CAI Guilong, ZHANG Yajing, WANG Jiayu, LU Xinhui, ZHAN Xiaowei, CHEN Xingguo. Simple Modulation of Side-chains of Near-infrared Absorbing Non-fullerene Acceptor for Higher Short-circuit Current Density [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230163. |
[2] | ZHANG Lifu, WANG Xinkang, CHEN Yiwang. New Strategy to Balance the Miscibility and Phase Separation to Improve Organic Solar Cells Efficiency [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230177. |
[3] | WANG Jiarui, YU Runnan, TAN Zhan’ao. Recent Advances in the Application of Metal Complexes for Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230150. |
[4] | TIAN Mei, ZHANG Zhiyang, ZHAN Chuanlang. Fused-benzotriazole Based p-Type Polymers: Fine-tuning on Absorption Band-width and Bandgap via Backbone Thiophene and Selenophene Strategies [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230190. |
[5] | LI Hao, YANG Chenyi, LI Jiayao, ZHANG Shaoqing, HOU Jianhui. Efficient Organic Solar Cells Based on Acceptor1-acceptor2 Type Polymer Donor [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230157. |
[6] | ZHANG Yu, CHEN Jiehuan, ZHOU Jiadong, LIU Linlin, XIE Zengqi. Aggregation Morphology of Perylene Bisimide Acceptors and the Role on Exciton Processes and Electron Transport in Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230092. |
[7] | SHI Shiling, JIANG Hanxi, TU Xueyang, XIAN Kaihu, HAN Dexia, LI Yanru, YAO Xiang, YE Long, FEI Zhuping. Synthesis and Photovoltaic Properties of Non-fullerene Acceptors Based on Aryl-substituted Imide End Groups [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230182. |
[8] | GUO Ziqi, JIAO Cancan, WU Simin, MENG Lingxian, SUN Yanna, KE Xin, WAN Xiangjian, CHEN Yongsheng. Effect of Substitution Positions of Alkyl Chains in Small Molecular Donor Bridged Units on the Performance of Photovoltaic Devices [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230180. |
[9] | ZAFAR Saud uz, ZHANG Weichao, YANG Shuo, LI Shilin, ZHANG Yingyu, ZHANG Yuan, ZHANG Hong, ZHOU Huiqiong. Beta-alanine as a Dual Modification Additive in Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230185. |
[10] | WU Jifa, WU Hanping, YUAN Lin, PENG Xiaobin. Enhancing the Performances of Porphyrin-based All-small-molecule Ternary Organic Solar Cells via Synergizing Fullerene and Non-fullerene Acceptors [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230136. |
[11] | SONG Yanan, YOU Zuhao, WANG Xu, LIU Yao. Research Progress of Electroactive Ionene-based Organic Photovoltaic Interlayers [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230167. |
[12] | YANG Hang, FAN Chenling, CUI Naizhe, LI Xiaoxiao, ZHANG Wenjing, CUI Chaohua. Cooperative Effect of Solvent Additive and Solvent Vapor Annealing on High-performance Thick-film Organic Solar Cells [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230162. |
[13] | SONG Xin, GAO Shenzheng, XU Shanlei, XU Hao, ZHOU Xinjie, ZHU Mengbing, HAO Rulin, ZHU Weiguo. Progress on the Efficiency Regulation of Organic Solar Cells by Volatile Solid Additives [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230151. |
[14] | LI Wei, CHEN Chen, LIU Dan, WANG Tao. Hierarchical Aggregates of Non-fullerene Electron Acceptors [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230160. |
[15] | MA Yifan, ZHANG Yamin, GAN Shengmin, ZHANG Yuchen, FEI Xian, WANG Ting, ZHANG Zeqi, GONG Xuezhu, ZHANG Haoli. Ternary Organic Photovoltaic Devices Based on Wide-band Gap Small Molecule Donor Third Component [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||