Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (4): 20220709.doi: 10.7503/cjcu20220709
• Physical Chemistry • Previous Articles Next Articles
XUE Zhuan1, MU Zhonglin1, HE Runhe1, LI Yongbing1, ZHANG Xingxiang1,2,3()
Received:
2022-11-08
Online:
2023-04-10
Published:
2023-01-08
Contact:
ZHANG Xingxiang
E-mail:zhangpolyu@aliyun.com
Supported by:
CLC Number:
TrendMD:
XUE Zhuan, MU Zhonglin, HE Runhe, LI Yongbing, ZHANG Xingxiang. Effects of Amino Content of Aminated Carbon Nanotubes on Specific Capacity of Cathode for Li-sulfur Battery[J]. Chem. J. Chinese Universities, 2023, 44(4): 20220709.
Species | C(%, molar fraction) | H(%, molar fraction) | N(%, molar fraction) | S(%, molar fraction) | ID/IG |
---|---|---|---|---|---|
SPAN/MWCNTs⁃NH2 | 38.17 | 0.72 | 12.90 | 46.56 | 1.32 |
SPAN/MWCNTs⁃NH2⁃8 | 37.12 | 0.05 | 13.39 | 48.77 | 1.29 |
SPAN/MWCNTs⁃NH2⁃12 | 35.70 | 0.63 | 12.08 | 49.02 | 1.23 |
SPAN/MWCNTs⁃NH2⁃16 | 35.39 | 0.78 | 11.74 | 50.75 | 1.15 |
Table 1 EA and Raman analysis of various composites
Species | C(%, molar fraction) | H(%, molar fraction) | N(%, molar fraction) | S(%, molar fraction) | ID/IG |
---|---|---|---|---|---|
SPAN/MWCNTs⁃NH2 | 38.17 | 0.72 | 12.90 | 46.56 | 1.32 |
SPAN/MWCNTs⁃NH2⁃8 | 37.12 | 0.05 | 13.39 | 48.77 | 1.29 |
SPAN/MWCNTs⁃NH2⁃12 | 35.70 | 0.63 | 12.08 | 49.02 | 1.23 |
SPAN/MWCNTs⁃NH2⁃16 | 35.39 | 0.78 | 11.74 | 50.75 | 1.15 |
Cathode | Specific capacity/(mA·h·g-1) | Cycle number | Retention rate(%) | Ref. |
---|---|---|---|---|
SPAN/MWCNTs⁃NH2 | 759.8(0.2C) | 200th(716.4 mA·h/g) | 94.3 | This work |
SPAN/MWCNTs | 644(0.2C) | 200th(560 mA·h/g) | 86.9 | [ |
PAN/S/MWCNTs | 599.6(0.1C) | 100th(491.5 mA·h/g) | 82.0 | [ |
pPAN/S/MWCNTs | 697(0.1C) | 50th(592 mA·h/g) | 85.0 | [ |
SPAN nanosheets | 630.2(0.2 A/g) | 300th(484 mA·h/g) | 76.8 | [ |
SPAN/RGO | 645.5(0.2C) | 200th(485 mA·h/g) | 75.0 | [ |
Table 2 Comparison of specific capacity and cycling stability of SPAN/MWCNTs-NH2-16 with other various cathode materials
Cathode | Specific capacity/(mA·h·g-1) | Cycle number | Retention rate(%) | Ref. |
---|---|---|---|---|
SPAN/MWCNTs⁃NH2 | 759.8(0.2C) | 200th(716.4 mA·h/g) | 94.3 | This work |
SPAN/MWCNTs | 644(0.2C) | 200th(560 mA·h/g) | 86.9 | [ |
PAN/S/MWCNTs | 599.6(0.1C) | 100th(491.5 mA·h/g) | 82.0 | [ |
pPAN/S/MWCNTs | 697(0.1C) | 50th(592 mA·h/g) | 85.0 | [ |
SPAN nanosheets | 630.2(0.2 A/g) | 300th(484 mA·h/g) | 76.8 | [ |
SPAN/RGO | 645.5(0.2C) | 200th(485 mA·h/g) | 75.0 | [ |
1 | Yang J. L., Zhao X. X., Ma M. Y., Liu Y., Zhang J. P., Wu X. L., Carbon Neutralization, 2022, 1(3), 247—266 |
2 | Peramunage D. L. S., Science, 1993, 261(5124), 1029—1032 |
3 | Wang L., Liu J., Yuan S., Wang Y., Xia Y., Energy Environ. Sci., 2016, 9(1), 224—231 |
4 | Li G., Wang S., Zhang Y., Li M., Chen Z., Lu J., Adv. Mater., 2018, 30(22), 1705590 |
5 | Chung S. H., Chang C. H., Manthiram A., Adv. Funct. Mater., 2018, 28(28), 1801188 |
6 | Abraham A. M., Boteju T., Ponnurangam S., Thangadurai V., Battery Energy, 2022, 1(3), 2022003 |
7 | Wang J., He Y. S., Yang J., Adv. Mater., 2015, 27(3), 569—575 |
8 | He Y., Qiao Y., Zhou H., Dalton Trans., 2018, 47(20), 6881—6887 |
9 | Liu X., Huang J. Q., Zhang Q., Mai L., Adv. Mater., 2017, 29(20), 1601759 |
10 | Chen W., Lei T., Wu C., Deng M., Gong C., Hu K., Ma Y., Dai L., Lv W., He W., Liu X., Xiong J., Yan C., Adv. Energy Mater., 2018, 8(10), 1702348 |
11 | Li J., Li K., Li M., Gosselink D., Zhang Y., Chen P., J. Power Sources, 2014, 252, 107—112 |
12 | Yao S., Xue S., Peng S., Jing M., Qian X., Shen X., Li T., Wang Y., J. Mater. Sci.: Mater. El., 2018, 29(20), 17921—17930 |
13 | Zhuang R., Yao S., Jing M., Shen X., Xiang J., Li T., Xiao K., Qin S., Beilstein J. Nanotechnol., 2018, 9, 262—270 |
14 | Han S. C., Song M. S., Lee H., J. Electrochem. Soc., 2003, 150(7), A889—A893 |
15 | lijima S., Nature, 1991, 354(7), 56—58 |
16 | Choi Y. J., Kim K. W., Ahn H. J., Ahn J. H., J. Alloys. Compd., 2008, 449(1/2), 313—316 |
17 | Guo J., Yang Z., Yu Y., Abruna H. D., Archer L. A., J. Am. Chem. Soc., 2013, 135(2), 763—767 |
18 | Lei J., Lu H., Chen J., Yang J., Nuli Y., Wang J., J. Energy Chem., 2022, 65, 186—193 |
19 | Abdul Razzaq A., Yao Y., Shah R., Qi P., Miao L., Chen M., Zhao X., Peng Y., Deng Z., Energy Stor. Mater., 2019, 16, 194—202 |
20 | Wang Z., Dong Y., Li H., Zhao Z., Wu H. B., Hao C., Liu S., Qiu J., Lou X. W., Nat. Commun., 2014, 5, 5002—5010 |
21 | Sarkar S., Bekyarova E., Niyogi S., Haddon R. C., J. Am. Chem. Soc., 2011, 133(10), 3324—3327 |
22 | Zhang J., Gao X., Zhang X., Liu H., Zhang H., Zhang X., J. Mater. Sci., 2019, 54(16), 11056—11068 |
23 | Frey M., Zenn R. K., Warneke S., Müller K., Hintennach A., Dinnebier R. E., Buchmeiser M. R., ACS Energy Lett., 2017, 2(3), 595—604 |
24 | Wang X., Qian Y., Wang L., Yang H., Li H., Zhao Y., Liu T., Adv. Funct. Mater., 2019, 29(39), 1902929 |
25 | Wei S., Ma L., Hendrickson K. E., Tu Z., Archer L. A., J. Am. Chem. Soc., 2015, 137(37), 12143—12152 |
26 | Kim H. M., Hwang J. Y., Aurbach D., Sun Y. K., J. Phys. Chem. Lett., 2017, 8(21), 5331—5337 |
27 | Chen X., Peng L., Wang L., Yang J., Hao Z., Xiang J., Yuan K., Huang Y., Shan B., Yuan L., Xie J., Nat. Commun., 2019, 10(1), 1021—1030 |
28 | Li M., Carter R., Douglas A., Oakes L., Pint C. L., ACS Nano, 2017, 11(5), 4877—4884 |
29 | Weret M. A., Jeffrey Kuo C. F., Zeleke T. S., Beyene T. T., Tsai M. C., Huang C. J., Berhe G. B., Su W. N., Hwang B. J., Energy Stor. Mater., 2020, 26, 483—493 |
30 | Liu Y., Wang W., Wang A., Jin Z., Zhao H., Yang Y., J. Mater. Chem. A, 2017, 5(42), 22120—22124 |
31 | Cheng Z., Pan Q., Rempel G. L., J. Polym. Sci. A: Polym. Chem., 2010, 48(10), 2057—2062 |
32 | Zhang H., Xu L., Yang F., Geng L., Carbon, 2010, 48(3), 688—695 |
33 | Wei W., Wang J., Zhou L., Yang J., Schumann B., Nu L. Y., Electrochem. Commun., 2011, 13(5), 399—402 |
34 | Yin L., Wang J., Yang J., Nuli Y., J. Mater. Chem., 2011, 21(19), 6807—6810 |
35 | Wang K., Zhao T., Zhang N., Feng T., Li L., Wu F., Chen R., Nanoscale, 2021, 13(39), 16690—16695 |
36 | Su Y. S., Fu Y. Z., Thomas C., Manthiram A., Nat. Commun., 2013, 4, 2985—2991 |
37 | Yao H., Qu Z. Z., Zhang X. H., Lai Y. Q., Liu Y. X., Carbon, 2014, 84, 399—436 |
38 | Yao S., Xue S., Zhang Y., Shen X., Qian X., Li T., Xiao K., Qin S., Xiang J., J. Mater. Sci.: Mater. El., 2017, 28(10), 7264—7270 |
39 | Yuan L., Qiu X., Chen L., Zhu W., J. Power Sources, 2009, 189(1), 127—132 |
[1] | ZHAO Xiaolang, YANG Mei, WANG Jiangyan, WANG Dan. Progress in the Structure Design and Surface Manipulation of Lithium-rich Cathode Materials [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220263. |
[2] | YIN Xiaoju, SUN Xun, ZHAO Chenghao, JIANG Bo, ZHAO Chenyang, ZHANG Naiqing. Research Progress of Single Atomic Catalysts in Lithium-sulfur Batteries [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220076. |
[3] | ZHANG Shiyu, HE Runhe, LI Yongbing, WEI Shijun, ZHANG Xingxiang. Fabrication of Lithium-sulfur Battery Cathode with Radiation Crosslinked Low Molecular Weight of Polyacrylonitrile and the Mechanism of Sulfur Storage [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210632. |
[4] | GAO Xiaole, WANG Jiaxin, LI Zhifang, LI Yanchun, YANG Donghua. Synthesis of NiOx-ZSM-5 Composite Materials and Its Electrocatalytic Hydrogen Evolution Performance in Microbial Electrolysis Cell [J]. Chem. J. Chinese Universities, 2021, 42(9): 2886. |
[5] | BAO Junquan, ZHENG Shibing, YUAN Xuming, SHI Jinqiang, SUN Tianjiang, LIANG Jing. An Organic Salt PTO(KPD)2 with Enhanced Performance as a Cathode Material in Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2021, 42(9): 2911. |
[6] | WANG Yimeng, LIU Kai, WANG Baoguo. Coating Strategies of Ni-rich Layered Cathode in LIBs [J]. Chem. J. Chinese Universities, 2021, 42(5): 1514. |
[7] | ZHANG Huishuang, GAO Yanxiao, WANG Qiuxian, LI Xiangnan, LIU Wenfeng, YANG Shuting. High-low Temperature Properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 Cathode Material by Hydrothermal Synthesis with CTAB Assisted [J]. Chem. J. Chinese Universities, 2021, 42(3): 819. |
[8] | LU Di,ZHENG Chunman,CHEN Yufang,LI Yujie,ZHANG Hongmei. Synthesis of Li-rich Layers/Spinel/Carbon Composite Cathode Materials with Phenol Formaldehyde Resin and Its Electrochemical Performance† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1684. |
[9] | LI Xin, CHEN Liang, MA Xiaotao, ZHANG Ding, XU Shoudong, ZHOU Xianxian, DUAN Donghong, LIU Shibin. Preparation of V2O3 Hollow Spheres for Lithium Sulfur Batteries † [J]. Chem. J. Chinese Universities, 2019, 40(9): 1972. |
[10] | YANG Jinge, LI Yujie, LU Di, CHEN Yufang, SUN Weiwei, ZHENG Chunman. Morphology Control and Lithium Storage Performance of Micro/nano Li-rich Cathode Material† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1495. |
[11] | YAO Fengnan,LI Yu,FENG Wei. Synthesis and Electrochemical Performance of Carbon-coated FeF2 Nanocomposite† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1418. |
[12] | MA Dongwei,TIAN Runsai,LIU Zhenjiang,FENG Yuanyuan,DING Hongyu,FENG Jijun. Microwave-assisted Synthesis and Electrochemical Performance of Na-Doped Cathode Materials Li2-xNaxMnSiO4/C† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1280. |
[13] |
CHEN Hong,DU Yonghui,ZHANG Xin,LIU Wenyan,ZHOU Xiaoming.
Preparation and Electrochemical Properties of Poly(3-hexylthiophene)-coated Lithium-rich Layered Cathode Material Li1.18Ni0.15Co0.15Mn0.52 |
[14] | Jian LIU,Haihui DU,Tianjiang SUN,Qingshun NIAN,Haixia LI,Zhanliang TAO. Preparation and Electrochemical Properties of Calcium Bronze/Carbon Nanotubes Composites † [J]. Chem. J. Chinese Universities, 2019, 40(12): 2526. |
[15] | WANG Kun, HUANG Mengyi, ZHANG Xiaosong, HUANG Junjie, DENG Xiang, LIU Changlu. Preparation and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2@C Composite† [J]. Chem. J. Chinese Universities, 2018, 39(1): 141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||