Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (4): 20220576.doi: 10.7503/cjcu20220576
• Analytical Chemistry • Previous Articles Next Articles
ZHAO Huanxi1, LI Zhuo2, ZHAO Mengya1, TIAN Lu1, XIAO Yusheng1, WANG Zhenhuan1, YUE Hao1(), XIU Yang1(
)
Received:
2022-08-30
Online:
2023-04-10
Published:
2022-12-15
Contact:
YUE Hao, XIU Yang
E-mail:yuehao@sohu.com;ys830805@sina.com
Supported by:
CLC Number:
TrendMD:
ZHAO Huanxi, LI Zhuo, ZHAO Mengya, TIAN Lu, XIAO Yusheng, WANG Zhenhuan, YUE Hao, XIU Yang. Differentiation and Investigation of Ginsenoside Isomers 20(S)-Rf and Rg1 by Energy-resolved Mass Spectrometry[J]. Chem. J. Chinese Universities, 2023, 44(4): 20220576.
Product ion | IF | A0 | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|---|---|
m/z 637.5 | 0.032 | 0.026 | 0.012 | 0.023 | 0.046 | 0.016 | 0.021 |
m/z 475.5 | 0.045 | 0.032 | 0.028 | 0.017 | 0.038 | 0.035 | 0.042 |
m/z 391.4 | 0.017 | 0.002 | 0.008 | 0.006 | 0.002 | 0.004 | 0.006 |
Table 1 Significant difference(P-value) in the IF data points and the parameters of the fitted curves between ginsenoside 20(S)-Rf and Rg1 product ions
Product ion | IF | A0 | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|---|---|
m/z 637.5 | 0.032 | 0.026 | 0.012 | 0.023 | 0.046 | 0.016 | 0.021 |
m/z 475.5 | 0.045 | 0.032 | 0.028 | 0.017 | 0.038 | 0.035 | 0.042 |
m/z 391.4 | 0.017 | 0.002 | 0.008 | 0.006 | 0.002 | 0.004 | 0.006 |
Product ion pair | IR | A0 | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|---|---|
m/z 637.5 to m/z 475.5 | 0.002 | 0.004 | 0.002 | 0.006 | 0.007 | 0.006 | 0.008 |
m/z 637.5 to m/z 391.4 | 0.107 | 0.009 | 0.016 | 0.089 | 0.216 | 0.328 | 0.671 |
m/z 475.5 to m/z 391.4 | 0.086 | 0.008 | 0.039 | 0.012 | 0.067 | 0.107 | 0.164 |
Table 2 Significant difference(P-value) in the IR data points and the parameters of the fitted curves between ginsenoside 20(S)-Rf and Rg1 product ions
Product ion pair | IR | A0 | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|---|---|
m/z 637.5 to m/z 475.5 | 0.002 | 0.004 | 0.002 | 0.006 | 0.007 | 0.006 | 0.008 |
m/z 637.5 to m/z 391.4 | 0.107 | 0.009 | 0.016 | 0.089 | 0.216 | 0.328 | 0.671 |
m/z 475.5 to m/z 391.4 | 0.086 | 0.008 | 0.039 | 0.012 | 0.067 | 0.107 | 0.164 |
1 | Liu Z. Q., Chem. Rev., 2012, 112(6), 3329—3355 |
2 | Shi Z. Y., Zeng J. Z., Wong A. S., Molecules, 2019, 24(13), 2443—2457 |
3 | Qi L. W., Wang C. Z., Yuan C. S., Nat. Prod. Rep., 2011, 28(3), 467—495 |
4 | Li X., Chu S. F., Lin M. Y., Gao Y., Liu Y. J., Yang S. W., Zhou X., Zhang Y. N., Hu Y. M., Wang H. Q., Chen N. H., Eur. J. Med. Chem., 2020, 203, 112627 |
5 | Oh J., Kim J. S., Food Funct., 2016, 7(11), 4506—4515 |
6 | Chan T. W. D., But P. P. H., Cheng S. W., Kwok I. M. Y., Lau F. W., Xu H. X., Anal. Chem., 2000, 72(6), 1281—1287 |
7 | Li W. K., Gu C. G., Zhang H. J., Awang D. V. C., Fitzloff J. F., Fong H. H., Breeman R. B., Anal. Chem., 2000, 72(21), 5417—5422 |
8 | Baek S. H., Bae O. N., Park J. H., J. Ginseng Res., 2012, 36(2), 119—134 |
9 | Seger C., Sturm S., Stuppner H., Nat. Prod. Rep., 2013, 30(7), 970—987 |
10 | Li X., Liu J., Zuo T. T., Hu Y., Li Z., Wang H. D., Xu X. Y., Yang W. Z., Guo D. A., Nat. Prod. Rep., 2022, 39(4), 875—909 |
11 | Xiu Y., Li X., Sun X. L., Xiao D., Miao R., Zhao H. X., Liu S. Y., J. Ginseng Res., 2019, 43(4), 508—516 |
12 | Zhao H. X., Wang Q. Y., Sun X. L., Li X., Miao R., Wu D. X., Liu S. Y., Xiu Y., Chem. J. Chinese Universities, 2019, 40(2), 246—253 |
赵幻希, 王秋颖, 孙秀丽, 李雪, 苗瑞, 吴冬雪, 刘淑莹, 修洋. 高等学校化学学报, 2019, 40(2), 246—253 | |
13 | Han M. X., Li F. T., Zhang Y., Dai Y. L., Zheng F., Yue H., Chem. J. Chinese Universities, 2019, 40(7), 1390—1396 |
韩铭鑫, 李方彤, 张琰, 戴雨霖, 郑飞, 越皓. 高等学校化学学报, 2019, 40(7), 1390—1396 | |
14 | Wong Y. L., Chen X., Li W., Wang Z., Hung Y. L., Wu R., Chan T. W., Anal. Chem., 2016, 88(11), 5590—5594 |
15 | Maroto A., Fouque D. J. D., Memboeuf A., J. Mass Spectrom., 2019, 55(7), e4478 |
16 | Romanczyk M., Zhang Y. Y., Easton M., Li W. R., Viidanoja J., Kenttämaa H., J. Am. Soc. Mass Spectrom., 2019, 31(1), 58—65 |
17 | Filho M. S., Massi L., Millet A., Michel D., Moussa W., Ronco C., Benhida, R., New J. Chem., 2022, 46, 8112—8121 |
18 | Murakami T., Iwamuro Y., Ishimaru R., Chinaka S., Kato N., Sakamoto Y., Sugimura N., Hasegawa H., J. Mass Spectrom., 2018, 54(3), 205—212 |
19 | Xia Y. Y., Sun X. S., Zhao X. J., Feng D. S., Wang X. X., Li Z. F., Ma C. F., Zhang H., Zhao C. X., Lin X. H., Lu X., Xu G. W., Talanta, 2022, 249, 123654 |
20 | Yu Q., Yu B., Yang H., Li X., Liu S., J. Mass Spectrom., 2012, 47(10), 1313—1321 |
21 | Gross J. H., Mass Spectrometry, Springer, Berlin Heidelberg, 2011, 421—424 |
22 | Cole R. B., Electrospray and MALDI Mass Spectrometry, John Wiley & Sons, New Jersey, 2010, 574—576 |
[1] | XIONG Wenpeng, CHU Yueying, WANG Qiang, XU Jun, DENG Feng. Relationship Between Zeolite Confinement Effect and Adsorbed 2-13C-acetone 13C Chemical Shift Studied by Theoretical Calculation [J]. Chem. J. Chinese Universities, 0, (): 20230063. |
[2] | XU Ruotao, WANG Qiang, BAO Qingjia, WANG Weiyu, ZHANG Zhi, LIU Zhaoyang, XU Jun, DENG Feng. In situ Magnetic Resonance Imaging of Solvent Infiltration on γ -Al2O3 Particles [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220587. |
[3] | SUN Zhiheng, LIU Guiying, WANG Bingzi, CHEN Yifu, FENG Yuezhu, JIN Yongri, LI Xuwen. Two New Holostane-type Glycosides from Apostichopus Japonicus Selenka [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220678. |
[4] | WANG Ri, BIAN Chao, XIE Yong, HAN Mingjie, LI Yang, XIA Shanhong. Novel Electrochemical Sensor Based on Molybdenum Disulfide and Cobalt Based Metal Organic Frameworks Nanocomposites for Trace Mercury Detection [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220719. |
[5] | WANG Gang, LIU Genqi, ZHAO Lingli, WANG Yue, LIU Lisha, SUN Chenxin, MA Xiaoyan. Nonylphenol Molecularly Imprinted 2D Photonic Crystal Hydrogel Sensor [J]. Chem. J. Chinese Universities, 0, (): 20220757. |
[6] | WANG Yingying, LI Xiaomin, CAI Yahui, LI Xiaoyu, SHI Bingbing. In-solution Selection Methods of DNA-encoded Library [J]. Chem. J. Chinese Universities, 2023, 44(3): 20220438. |
[7] | CHEN Jialu, HUANG Shuo. Applications of Nanopore Sequencing Technology in the Detection of Nucleic Acid Modifications [J]. Chem. J. Chinese Universities, 2023, 44(3): 20220333. |
[8] | CAO Zhong, GUO Peixian, XUE Shulei, XIAO Zhongliang, TAN Shuqi, KANG Xuan, FENG Zemeng, YIN Yulong, MA Tianji. Sensitive Detection of L-Arginine Using Peptide Aptamer Functionalized Nanochannel [J]. Chem. J. Chinese Universities, 0, (): 20220758. |
[9] | SONG Lu, ZHANG Shuyang, WANG Lihua, ZUO Xiaolei, LI Min. High-throughput Biological Microarrays Based on Framework Nucleic Acids [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220563. |
[10] | FU Fangmei, XU Mengru, LIANG Zishan, HUANG Sirui, LI Hui, ZHANG Haoran, LI Wei, ZHENG Mingtao, LEI Bingfu. Conjugate Size and Surface Oxidation Synergistically Trigger Red Fluorescence in Carbon Dots for Detecting Trace Water in Organic Solvents [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220464. |
[11] | CHU Binbin, HE Yao. Silicon-based Nanoprobes for Imaging Detection and Therapy of Ocular Diseases [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220546. |
[12] | QIN Wenjie, HUANG Yizhuo, LUO Xiao, QIAN Xuhong, YANG Youjun. Probe Design Strategies for Cy7-type Cyanine Dyes [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220567. |
[13] | YANG Yanling, YE Deju. Recent Advances in the Development of Molecular Probes for Targeting Carbonic Anhydrases [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220557. |
[14] | LI Ao, LI Lingxuan, ZUO Cuicui, CHEN Chuankai, FAN Yifan, BU Yifan, LIN Hongyu, GAO Jinhao. Boronate-based 19F NMR/MRI Molecular Probe for Activatable Deep-tissue Imaging of Reactive Oxygen Species [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220545. |
[15] | WANG Shiqi, LUO Bowen, YU Jicheng, GU Zhen. Near-infrared-Ⅱ Fluorescence Imaging for Tumor Diagnosis and Therapy [J]. Chem. J. Chinese Universities, 2022, 43(12): 20220577. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||